High Pressure High Temperature Coiled Tubing Intervention Operations in the North Sea Within the Past Two Years

2005 ◽  
Author(s):  
Alan Charles John Turner ◽  
Bob Murdoch
2014 ◽  
Vol 17 (04) ◽  
pp. 444-448 ◽  
Author(s):  
J.. Owens ◽  
G.. Parry ◽  
B.. Taylor

Summary Data acquisition in extreme environments of high pressure and/or high temperature (HPHT) with pressures up to 30,000 psi and temperatures up to 500°F requires not only specialist technology capable of surviving these conditions but also many months of preparation and planning to ensure a successful operation. The aim of this publication is to provide an overview of what is involved in the planning, preparation, and execution of an extreme HPHT wireline data acquisition—from the customer setting the information objectives through to data delivery. This includes developing an agreed quality plan between the data provider and the customer covering testing and deployment of the latest extreme HPHT logging equipment. One must consider all aspects to minimize risks including detailed tailoring of the logging programs to manage time in hole, to ensure accurate depth control, and, by using a deployment risk-management process, to ensure that what goes in the hole comes out again. The implementation of these procedures is illustrated with a case history of a series of HPHT exploration wells drilled in the Central Graben of the North Sea (the "HPHT Heartland" of the North Sea). Bottomhole conditions were predicted to approach 400°F and 15,000 psi. These extreme conditions negated the use of conventional wireline tools, and so, from initial early planning discussions between client and service provider, new detailed programs were designed and implemented as a specific "Quality Plan" to use the advanced HPHT wireline-logging tools.


2022 ◽  
Author(s):  
Shaun Thomson ◽  
Baglan Kiyabayev ◽  
Barry Ritchie ◽  
Jakob Monberg ◽  
Maurits De Heer ◽  
...  

Abstract The Valdemar field, located in the Danish sector of the North Sea, targets a Lower Cretaceous, "dirty chalk" reservoir characterized by low permeabilities of <0.5mD, high porosities of >20% and contains up to 25% insoluble fines. To produce economically the reservoir must be stimulated. Typically, this is by means of hydraulic fracturing. A traditional propped fracture consists of 500,000 to 1,000,000 lbs of 20/40 sand, placed using a crosslinked seawater-based borate fluid. The existing wells in the field are completed using the PSI (perforate, isolate, stimulate)1 system. This system was developed in the late 1980s as a way of improving completion times allowing each interval to be perforated, stimulated and isolated in a single trip and has been used extensively in the Danish North Sea in a variety of fields. The system consists of multiset packers with sliding sleeves and typically takes 2-3 days between the start of one fracture to the next. Future developments in this area now require a new, novel and more efficient approach owing to new target reservoir being of a thinner and poorer quality. In order for these new developments to be economical an approach was required to allow for longer wells to be drilled and completed allowing better reservoir connectivity whilst at the same time reducing the completion time, and therefore rig time and overall cost. A project team was put together to develop a system that could be used in an offshore environment that would satisfy the above criteria, allowing wells to be drilled out to 21,000ft and beyond in excess of coiled tubing reach. The technology developed consists of cemented frac sleeves, operated with jointed pipe, allowing multiple zones to be stimulated in one trip, as well as utilizing a modified BHA that allows for the treatments to take place through the tubing, bringing numerous benefits. The following paper details the reasons for developing the new technology, the development process itself, the challenges that had to be overcome and a case history on the execution of the first job of its kind in the North Sea, in which over 7MM lbs of sand was pumped successfully, as well as the post treatment operations which included a proof of concept in utilizing a tractor to manipulate the sleeves. Finally, the production performance will be discussed supported by the use of tracer subs at each of the zones.


1996 ◽  
Vol 48 (5) ◽  
Author(s):  
Philip Wodka ◽  
Henrik Tirsgaard ◽  
C.J. Adamsen ◽  
A.P. Damgaard

Antiquity ◽  
2017 ◽  
Vol 91 (358) ◽  
pp. 1095-1097
Author(s):  
Hans Peeters

Over the past decade or so, the submerged prehistoric archaeology and landscapes in the area that is known to us today as the North Sea have received increasing attention from both archaeologists and earth scientists. For too long, this body of water was perceived as a socio-cultural obstacle between the prehistoric Continent and the British Isles, the rising sea level a threat to coastal settlers, and the North Sea floor itself an inaccessible submerged landscape. Notwithstanding the many pertinent and pervasive problems that the archaeology of the North Sea still needs to overcome, recent research has made clear that these rather uninspiring beliefs are misplaced.


Sign in / Sign up

Export Citation Format

Share Document