A New Method of Predicting the Productivity And Critical Production Rate Calculation of Horizontal Well

10.2118/97-23 ◽  
1997 ◽  
Author(s):  
D. Hongen
2015 ◽  
Author(s):  
Xiangji Dou ◽  
Xinwei Liao ◽  
Huawei Zhao ◽  
Tianyi Zhao ◽  
Zhiming Chen ◽  
...  

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Qi-guo Liu ◽  
Wei-hong Wang ◽  
Hua Liu ◽  
Guangdong Zhang ◽  
Long-xin Li ◽  
...  

Shale gas reservoir has been aggressively exploited around the world, which has complex pore structure with multiple transport mechanisms according to the reservoir characteristics. In this paper, a new comprehensive mathematical model is established to analyze the production performance of multiple fractured horizontal well (MFHW) in box-shaped shale gas reservoir considering multiscaled flow mechanisms (ad/desorption and Fick diffusion). In the model, the adsorbed gas is assumed not directly diffused into the natural macrofractures but into the macropores of matrix first and then flows into the natural fractures. The ad/desorption phenomenon of shale gas on the matrix particles is described by a combination of the Langmuir’s isothermal adsorption equation, continuity equation, gas state equation, and the motion equation in matrix system. On the basis of the Green’s function theory, the point source solution is derived under the assumption that gas flow from macropores into natural fractures follows transient interporosity and absorbed gas diffused into macropores from nanopores follows unsteady-state diffusion. The production rate expression of a MFHW producing at constant bottomhole pressure is obtained by using Duhamel’s principle. Moreover, the curves of well production rate and cumulative production vs. time are plotted by Stehfest numerical inversion algorithm and also the effects of influential factors on well production performance are analyzed. The results derived in this paper have significance to the guidance of shale gas reservoir development.


2019 ◽  
Vol 38 (4) ◽  
pp. 801-818
Author(s):  
Ren-Shi Nie ◽  
Yi-Min Wang ◽  
Yi-Li Kang ◽  
Yong-Lu Jia

The steam chamber rising process is an essential feature of steam-assisted gravity drainage. The development of a steam chamber and its production capabilities have been the focus of various studies. In this paper, a new analytical model is proposed that mimics the steam chamber development and predicts the oil production rate during the steam chamber rising stage. The steam chamber was assumed to have a circular geometry relative to a plane. The model includes determining the relation between the steam chamber development and the production capability. The daily oil production, steam oil ratio, and rising height of the steam chamber curves influenced by different model parameters were drawn. In addition, the curve sensitivities to different model parameters were thoroughly considered. The findings are as follows: The daily oil production increases with the steam injection rate, the steam quality, and the degree of utilization of a horizontal well. In addition, the steam oil ratio decreases with the steam quality and the degree of utilization of a horizontal well. Finally, the rising height of the steam chamber increases with the steam injection rate and steam quality, but decreases with the horizontal well length. The steam chamber rising rate, the location of the steam chamber interface, the rising time, and the daily oil production at a certain steam injection rate were also predicted. An example application showed that the proposed model is able to predict the oil production rate and describe the steam chamber development during the steam chamber rising stage.


2019 ◽  
Author(s):  
Chen Yuan ◽  
Sun Ting ◽  
Zhao Ying ◽  
Xing Wen Wang ◽  
Mo Xi Qu ◽  
...  

2010 ◽  
Vol 129-131 ◽  
pp. 626-630
Author(s):  
Shi Wei Zhang ◽  
Li Yuan Hou ◽  
Yong Chao Han ◽  
Yuan Hua Xie

In the process of manufacturing the composite materials, some of the chemical components are difficult to combine with each other. Aiming at this problem, a new method and supporting equipment of manufacturing the composite powder materials is reported which can make any two (or more) kinds of components mixing in nano-scale. This method is derived from the vacuum co-depositing technology by two (or more) vaporization sources for vacuum film coating, and some of the structures in vacuum film coil coating machine are used for reference. The principle, structure, process and characteristics of this method are introduced in detail. The models for depositing rate calculation are built respectively for both the electric resistance evaporation sources and the magnetron sputtering targets. The mixing component uniformity in the depositing powder material is analyzed by calculation.


2021 ◽  
Vol 196 ◽  
pp. 107955
Author(s):  
Jian Sun ◽  
Mingqiang Chen ◽  
Qi Li ◽  
Long Ren ◽  
Mengyuan Dou ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document