Influence of the Horizontal Well Length upon Production Rate and Water-cut Performance in Regular Field Development Systems with Horizontal Wells

2002 ◽  
Author(s):  
I.R. Mukminov
2021 ◽  
Vol 10 ◽  
pp. 17-32
Author(s):  
Guido Fava ◽  
Việt Anh Đinh

The most advanced technique to evaluate different solutions proposed for a field development plan consists of building a numerical model to simulate the production performance of each alternative. Fields covering hundreds of square kilometres frequently require a large number of wells. There are studies and software concerning optimal planning of vertical wells for the development of a field. However, only few studies cover planning of a large number of horizontal wells seeking full population on a regular pattern. One of the criteria for horizontal well planning is selecting the well positions that have the best reservoir properties and certain standoffs from oil/water contact. The wells are then ranked according to their performances. Other criteria include the geometry and spacing of the wells. Placing hundreds of well individually according to these criteria is highly time consuming and can become impossible under time restraints. A method for planning a large number of horizontal wells in a regular pattern in a simulation model significantly reduces the time required for a reservoir production forecast using simulation software. The proposed method is implemented by a computer script and takes into account not only the aforementioned criteria, but also new well requirements concerning existing wells, development area boundaries, and reservoir geological structure features. Some of the conclusions drawn from a study on this method are (1) the new method saves a significant amount of working hours and avoids human errors, especially when many development scenarios need to be considered; (2) a large reservoir with hundreds of wells may have infinite possible solutions, and this approach has the aim of giving the most significant one; and (3) a horizontal well planning module would be a useful tool for commercial simulation software to ease engineers' tasks.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Shijun Huang ◽  
Baoquan Zeng ◽  
Fenglan Zhao ◽  
Linsong Cheng ◽  
Baojian Du

Horizontal wells have been applied in bottom-water reservoir since their advantages were found on distribution of linear dropdown near wellbore, higher critical production, and more OOIP (original oil in place) controlled. In the paper, one 3D visible physical model of horizontal physical model is designed and built to simulate the water cresting process during the horizontal well producing and find water breakthrough point in homogenous and heterogeneous reservoir with bottom water. Water cresting shape and water cut of horizontal well in between homogenous and heterogeneous reservoir are compared on the base of experiment’s result. The water cresting pattern of horizontal well in homogeneous reservoir can be summarized as “central breakthrough, lateral expansion, thorough flooding, and then flank uplifting.” Furthermore, a simple analysis model of horizontal well in bottom water reservoir is established and water breakthrough point is analyzed. It can be drawn from the analysis result that whether or not to consider the top and bottom border, breakthrough would be located in the middle of horizontal segment with equal flow velocity distribution.


2019 ◽  
Vol 16 (11) ◽  
pp. 4584-4588
Author(s):  
I. A. Pogrebnaya ◽  
S. V. Mikhailova

The work is devoted to identifying the most relevant geological and technical measures carried out in Severo-Ostrovnoe field from the period of its development to the present. Every year dozens of geotechnical jobs (GJ) are carried out at each oil field-works carried out at wells to regulate the development of fields and maintain target levels of oil production. Today, there are two production facilities in the development of the Severo-Ostrovnoe field: UV1a1 and BV5. With the help of geotechnical jobs, oil-producing enterprises ensure the fulfillment of project indicators of field development (Mikhailov, N.N., 1992. Residual Oil Saturation of Reservoirs Under Development. Moscow, Nedra. p.270; Good, N.S., 1970. Study of the Physical Properties of Porous Media. Moscow, Nedra. p.208). In total, during the development of the Severo-Ostrovnoe field, 76 measures were taken to intensify oil production and enhance oil recovery. 12 horizontal wells were drilled (HW with multistage fracking (MSF)), 46 hydraulic fracturing operations were performed, 12 hydraulic fracturing operations were performed at the time of withdrawal from drilling (HW with MSF), five sidetracks were cut; eight physic-chemical BHT at production wells; five optimization of well operation modes. The paper analyzes the performed geological and technical measures at the facilities: UV1a1∦BV5 of the Severo-Ostrovnoe field. Four types of geological and technical measures were investigated: hydraulic fracturing, drilling of sidetracks with hydraulic fracturing, drilling of horizontal wells with multi-stage hydraulic fracturing, and physic-chemical optimization of the bottom-hole formation zone. It was revealed that two geotechnical jobs, namely, formation hydraulic fracturing (FHF) and drilling of lateral shafts in the Severo-Ostrovnoe field are the most highly effective methods for intensifying reservoir development and increasing oil recovery. SXL was conducted at 5 wells. The average oil production rate is 26.6 tons per day, which is the best indicator. Before this event, the production rate of the well was 2.1 tons per day. Currently, the effect of ongoing activities continues.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 343
Author(s):  
Shuaifei Cui ◽  
Junfeng Liu ◽  
Xulong Chen ◽  
Qinze Li

In the gas-water two phase of horizontal well, gas holdup is usually obtained by inverse calculation of the water holdup measured by the array capacitance probes. Gas Array Tool (GAT) has been developed to directly measure gas holdup. This instrument has been introduced into China and its simulation experiment in gas-water two phase flow in horizontal wells has been carried out for the first time to study the applicability of gas holdup measurement. Firstly, the response principle and measurement method of GAT are analyzed; secondly, the experimental data of GAT under different flowrates, water cut, and different cable speed are plotted and analyzed; finally, the gas holdup data measured by GAT and Capacitance Array Tool (CAT) are compared by using an interpolation algorithm. It is found that the response of the optical fiber probe is consistent and stable. It also proves the accuracy of gas identification and the applicability of gas holdup measurement under test conditions by GAT, which lays a foundation for further gas holdup measurement, interpretation, and field test in the future.


2018 ◽  
Vol 6 (3) ◽  
pp. T699-T712 ◽  
Author(s):  
Ren-Shi Nie ◽  
Jin-Jing Ou ◽  
Su-Ran Wang ◽  
Qi Deng ◽  
Ming Qin ◽  
...  

We have developed a time-tracking test method for pressure buildup tests of horizontal wells to reduce the costs associated with testing wells. The time-tracking test method requires several tests that are performed chronologically from the midsection of the horizontal wellbore to the kickoff point. The purpose of time-tracking tests is to determine the production conditions of horizontal wells that allow the tests to be conducted at the kickoff point. Two horizontal wells associated within a sandstone oil reservoir were specifically chosen to determine how our time-tracking test method is to be implemented. The two wells had completely different production conditions. One had a small gas rate and a large water cut, whereas the other had a large gas rate and a small water cut. We recorded and analyzed the tested pressure data at numerous wellbore positions along the same horizontal well. Then, we interpreted the tested pressure data and compared the test results at different points along each well using the test curve shape and the interpretation parameter values. Through comparisons of the two wells, we found that the well-test curve shape and the interpretation results of tests performed above the kickoff point were completely different from those of the tests at the midsection of the horizontal wellbore under the conditions of a large gas rate and a small water cut. If a horizontal well has a small gas rate and a large water cut, the well can be tested at the kickoff point in the well using the wireline. We recommend that field petroleum engineers adopt the time-tracking test method to judge whether their horizontal wells should be tested at the kickoff point.


2019 ◽  
Vol 20 (3) ◽  
pp. 75-79 ◽  
Author(s):  
Ayad A.Alhaleem A.Alrazzaq

There are varieties of reasons lead for drilling horizontal wells rather than verticals. Increasing the recovery of oil, especially from thin or tight reservoir permeability is the most important parameter. East Baghdad oil field considered as a giant field with approximately more than 1billion barrel of a proved reserves accompanying recently to low production rate problems in many of the existing wells.    It is important to say that presence of of  horizontal wells in East Baghdad field especially by converting some of already drilled wells by re-entry drilling horizontal sections may provide one of best solutions for the primary development stage in East Baghdad field which may be followed by drilling new horizontal wells or using multilateral wells.    Advance software (Well Test/FAST) has been used to convert the production data for the already drilled vertical wells to horizontals to simulate the productivity. It can be concluded that no measurements available for the ratio of anisotropy (Kv/Kh); in East Baghdad Oil Field therefore, the wells productivity has been estimated using wide range of anisotropy ratios that will help the field operator to determine exactly wells productivity. Moreover, it helps to recommend the effectiveness of applying hydraulic fracturing in improving horizontal well productivity.    The results show that it could be used well EB-32 as a re-entry horizontal well with an optimum section length of 1500-2000ft wich give the best production rate. The same result could be stated for EB-10 with somewhat higher productivity than EB-32.


2021 ◽  
Author(s):  
Arsenii Stanislavovich Posdyshev ◽  
Pavel Vladimirovich Shelyakin ◽  
Nurislam Maratovich Shaikhutdinov ◽  
Aleksey Alekseevich Popov ◽  
Maria Dmitrievna Logacheva ◽  
...  

Abstract The purpose of this work is to adapt and apply Next Generation Sequencing methods in oil and gas well field studies. Relatively recent NGS methods provide a description of a geological formation by analyzing millions of DNA sequences and represent an entirely new way to obtain information about oil and gas reservoirs and the composition of their fluids, which could significantly change the approach to exploration and field development. We present the results of pilot work to determine the inflow profile in a horizontal well based on DNA markers. The technology is based on the comparison of bacterial DNA from drill cuttings obtained while drilling with DNA from microorganisms of fluids obtained during production at the wellhead. Because of their high selectivity, individual microbes live only under certain conditions (salinity, oil saturation, temperature) and can be used as unique natural biomarkers. The comparison of DNA samples of drilling cutting and produced fluid allows for identification of the segment of the horizontal well from which the main flow comes, as well as identifying the type of incoming fluid (water, oil, gas) without stopping the operation process and without conducting expensive downhole operations. As a result of these studies, the microbial communities of the oil-bearing sands and formation fluids of the Cretaceous deposits (group BS) in Western Siberia were identified, and the relative numerical ratio of microorganisms in the formations was determined. It was shown that the microbiome diversity changes with depth, and depends on the lithological composition, and sequencing data obtained from cuttings samples correlate with data from wellhead samples of produced fluid. Thus, the practical applicability of DNA sequencing for solving field problems in oil and gas field development, in particular for determining the inflow profile in horizontal wells, was confirmed.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jianfa Wu ◽  
Jian Zhang ◽  
Cheng Chang ◽  
Weiyang Xie ◽  
Tianpeng Wu

Although great success has been achieved in the shale gas industry, accurate production dynamic analyses is still a challenging task. Long horizontal wells coupling with mass hydraulic fracturing has become a necessary technique to extract shale gas efficiently. In this paper, a comprehensive mathematical model of a multiple fractured horizontal well (MFHW) in a rectangular drainage area with a rectangular stimulated reservoir volume (SRV) has been established, based on the conceptual model of “tri-pores” in shale gas reservoirs. Dimensionless treatment and Laplace transformation were employed in the modeling process, while the boundary element method was used to solve the mathematical model. The Stehfest numerical inversion method and computer programing techniques were employed to obtain dimensionless type curves, production rate, and cumulative production. Results suggest that 9 flow stages can be observed from the pseudopressure derivative type curve when the reservoir and the SRV are large enough. The number of fractures, SRV permeability, and reservoir permeability have no effect on the total production when the well is abandoned. As SRV and reservoir permeability increases, the production rate is much higher in the middle production stage. Although the SRV scale and its permeability are very important for early and intermediate production rates, the key factors restricting the shale gas production rate are the properties of the shale itself, such as adsorbed gas content, natural fractures, and organic content. The proposed model is useful for analyzing production dynamics with stimulated horizontal wells in shale gas reservoirs.


2007 ◽  
Author(s):  
Ken E.T. Halward ◽  
Joe Emery ◽  
Rod Christensen ◽  
Daniel Joseph Bourgeois ◽  
Grant Skinner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document