Mapping Reservoir Volume Changes During Cyclic Steam Stimulation Using Tiltmeter Based Surface Deformation Measurements

Author(s):  
Jing Du ◽  
Simon John Brissenden ◽  
Peter McGillivray ◽  
Stephen James Bourne ◽  
Paul Hofstra ◽  
...  
2008 ◽  
Vol 11 (01) ◽  
pp. 63-72 ◽  
Author(s):  
Jing Du ◽  
Simon J. Brissenden ◽  
Peter McGillivray ◽  
Stephen J. Bourne ◽  
Paul Hofstra ◽  
...  

Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 132-147 ◽  
Author(s):  
Don W. Vasco ◽  
Kenzi Karasaki ◽  
Christine Doughty

The inversion of surface deformation data such as tilt, displacement, or strain provides a noninvasive method for monitoring subsurface volume change. Reservoir volume change is related directly to processes such as pressure variations induced by injection and withdrawal. The inversion procedure is illustrated by an application to tiltmeter data from the Hijiori test site in Japan. An inversion of surface tilt data allows us to image flow processes in a fractured granodiorite. Approximately 650 barrels of water, injected 2 km below the surface, produces a peak surface tilt of the order of 0.8 microradians. We find that the pattern of volume change in the granodiorite is very asymmetrical, elongated in a north‐northwesterly direction, and the maximum volume change is offset by more than 0.7 km to the east of the pumping well. The inversion of a suite of leveling data from the Wilmington oil field in Long Beach, California, images large‐scale reservoir volume changes in 12 one‐ to two‐year increments from 1976 to 1996. The influence of various production strategies is seen in the reservoir volume changes. In particular, a steam flood in fault block II in the northwest portion of the field produced a sudden decrease in reservoir volume.


Vestnik MEI ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 101-108
Author(s):  
Anton Yu. Poroykov ◽  
◽  
Konstantin M. Lapitskiy ◽  

2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Yu Chen ◽  
Mohamed Ahmed ◽  
Natthachet Tangdamrongsub ◽  
Dorina Murgulet

The Nile River stretches from south to north throughout the Nile River Basin (NRB) in Northeast Africa. Ethiopia, where the Blue Nile originates, has begun the construction of the Grand Ethiopian Renaissance Dam (GERD), which will be used to generate electricity. However, the impact of the GERD on land deformation caused by significant water relocation has not been rigorously considered in the scientific research. In this study, we develop a novel approach for predicting large-scale land deformation induced by the construction of the GERD reservoir. We also investigate the limitations of using the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) mission to detect GERD-induced land deformation. We simulated three land deformation scenarios related to filling the expected reservoir volume, 70 km3, using 5-, 10-, and 15-year filling scenarios. The results indicated: (i) trends in downward vertical displacement estimated at −17.79 ± 0.02, −8.90 ± 0.09, and −5.94 ± 0.05 mm/year, for the 5-, 10-, and 15-year filling scenarios, respectively; (ii) the western (eastern) parts of the GERD reservoir are estimated to move toward the reservoir’s center by +0.98 ± 0.01 (−0.98 ± 0.01), +0.48 ± 0.00 (−0.48 ± 0.00), and +0.33 ± 0.00 (−0.33 ± 0.00) mm/year, under the 5-, 10- and 15-year filling strategies, respectively; (iii) the northern part of the GERD reservoir is moving southward by +1.28 ± 0.02, +0.64 ± 0.01, and +0.43 ± 0.00 mm/year, while the southern part is moving northward by −3.75 ± 0.04, −1.87 ± 0.02, and −1.25 ± 0.01 mm/year, during the three examined scenarios, respectively; and (iv) the GRACE-FO mission can only detect 15% of the large-scale land deformation produced by the GERD reservoir. Methods and results demonstrated in this study provide insights into possible impacts of reservoir impoundment on land surface deformation, which can be adopted into the GERD project or similar future dam construction plans.


2016 ◽  
Author(s):  
Mohammed Al Raqmi ◽  
Hassan Al Saadi ◽  
Muhammad Mirza ◽  
Shihab Said Al Bahlouli ◽  
M. Aidil Arham ◽  
...  

2021 ◽  
Author(s):  
Alexey V. Vakhin ◽  
Irek I. Mukhamatdinov ◽  
Firdavs A. Aliev ◽  
Dmitriy F. Feoktistov ◽  
Sergey A. Sitnov ◽  
...  

Abstract A nickel-based catalyst precursor has been synthesized for in-situ upgrading of heavy crude oil that is capable of increasing the efficiency of steam stimulation techniques. The precursor activation occurs due to the decomposition of nickel tallate under hydrothermal conditions. The aim of this study is to analyze the efficiency of in-situ catalytic upgrading of heavy oil from laboratory scale experiments to the field-scale implementation in Boca de Jaruco reservoir. The proposed catalytic composition for in-reservoir chemical transformation of heavy oil and natural bitumen is composed of oil-soluble nickel compound and organic hydrogen donor solvent. The nickel-based catalytic composition in laboratory-scale hydrothermal conditions at 300°С and 90 bars demonstrated a high performance; the content of asphaltenes was reduced from 22% to 7 wt.%. The viscosity of crude oil was also reduced by three times. The technology for industrial-scale production of catalyst precursor was designed and the first pilot batch with a mass of 12 ton was achieved. A «Cyclic steam stimulation» technology was modified in order to deliver the catalytic composition to the pay zones of Boca de Jaruco reservoir (Cuba). The active forms of catalyst precursors are nanodispersed mixed oxides and sulfides of nickel. The pilot test of catalyst injection was carried out in bituminous carbonate formation M, in Boca de Jaruco reservoir (Cuba). The application of catalytic composition provided increase in cumulative oil production and incremental oil recovery in contrast to the previous cycle (without catalyst) is 170% up to date (the effect is in progress). After injection of catalysts, more than 200 samples from production well were analyzed in laboratory. Based on the physical and chemical properties of investigated samples and considering the excellent oil recovery coefficient it is decided to expand the industrial application of catalysts in the given reservoir. The project is scheduled on the fourth quarter of 2021.


Sign in / Sign up

Export Citation Format

Share Document