Industrial Application of Nickel Tallate Catalyst During Cyclic Steam Stimulation in Boca De Jaruco Reservoir

2021 ◽  
Author(s):  
Alexey V. Vakhin ◽  
Irek I. Mukhamatdinov ◽  
Firdavs A. Aliev ◽  
Dmitriy F. Feoktistov ◽  
Sergey A. Sitnov ◽  
...  

Abstract A nickel-based catalyst precursor has been synthesized for in-situ upgrading of heavy crude oil that is capable of increasing the efficiency of steam stimulation techniques. The precursor activation occurs due to the decomposition of nickel tallate under hydrothermal conditions. The aim of this study is to analyze the efficiency of in-situ catalytic upgrading of heavy oil from laboratory scale experiments to the field-scale implementation in Boca de Jaruco reservoir. The proposed catalytic composition for in-reservoir chemical transformation of heavy oil and natural bitumen is composed of oil-soluble nickel compound and organic hydrogen donor solvent. The nickel-based catalytic composition in laboratory-scale hydrothermal conditions at 300°С and 90 bars demonstrated a high performance; the content of asphaltenes was reduced from 22% to 7 wt.%. The viscosity of crude oil was also reduced by three times. The technology for industrial-scale production of catalyst precursor was designed and the first pilot batch with a mass of 12 ton was achieved. A «Cyclic steam stimulation» technology was modified in order to deliver the catalytic composition to the pay zones of Boca de Jaruco reservoir (Cuba). The active forms of catalyst precursors are nanodispersed mixed oxides and sulfides of nickel. The pilot test of catalyst injection was carried out in bituminous carbonate formation M, in Boca de Jaruco reservoir (Cuba). The application of catalytic composition provided increase in cumulative oil production and incremental oil recovery in contrast to the previous cycle (without catalyst) is 170% up to date (the effect is in progress). After injection of catalysts, more than 200 samples from production well were analyzed in laboratory. Based on the physical and chemical properties of investigated samples and considering the excellent oil recovery coefficient it is decided to expand the industrial application of catalysts in the given reservoir. The project is scheduled on the fourth quarter of 2021.

2021 ◽  
Vol 343 ◽  
pp. 09009
Author(s):  
Gheorghe Branoiu ◽  
Florinel Dinu ◽  
Maria Stoicescu ◽  
Iuliana Ghetiu ◽  
Doru Stoianovici

Thermal oil recovery is a special technique belonging to Enhanced Oil Recovery (EOR) methods and includes steam flooding, cyclic steam stimulation, and in-situ combustion (fire flooding) applied especially in the heavy oil reservoirs. Starting 1970 in-situ combustion (ISC) process has been successfully applied continuously in the Suplacu de Barcau oil field, currently this one representing the most important reservoir operated by ISC in the world. Suplacu de Barcau field is a shallow clastic Pliocene, heavy oil reservoir, located in the North-Western Romania and geologically belonging to Eastern Pannonian Basin. The ISC process are operated using a linear combustion front propagated downstructure. The maximum oil production was recorded in 1985 when the total air injection rate has reached maximum values. Cyclic steam stimulation has been continuously applied as support for the ISC process and it had a significant contribution in the oil production rates. Nowadays the oil recovery factor it’s over 55 percent but significant potential has left. In the paper are presented the important moments in the life-time production of the oil field, such as production history, monitoring of the combustion process, technical challenges and their solving solutions, and scientific achievements revealed by many studies performed on the impact of the ISC process in the oil reservoir.


2020 ◽  
Vol 9 (2) ◽  
pp. 80-87
Author(s):  
Ahmad Muraji Suranto ◽  
Boni Swadesi ◽  
Indah Widyaningsih ◽  
Ratna Widyaningsih ◽  
Sri Wahyu Murni ◽  
...  

Steam injection can be success in increasing oil recovery by determining the steam chamber growth. It will impact on the steam distribution and steam performance in covering hot areas in the reservoir.  An injection plan and a proper cyclic steam stimulation (CSS) schedule are critical in predicting how steam chamber can grow and cover the heat area. A reservoir simulation model will be used to understand how CSS really impact in steam chamber generation and affect the oil recovery. This paper generates numerous scenarios to see how steam working in heavy oil system particularly in unconsolidated sand reservoir. Combine the CSS method and steam injection continue investigate in this research. We will validate the scenarios based on the how fast steam chest can grow and get maximum oil recovery. Reservoir simulation resulted how steam chest behavior in unconsolidated sand to improve oil recovery; It concluded that by combining CSS and Steam Injection, we may get a faster steam chest growth and higher oil recovery by 61.5% of heavy oil system.


2011 ◽  
Vol 347-353 ◽  
pp. 3219-3222
Author(s):  
Xi Shun Zhang ◽  
Xiao Dong Wu ◽  
Shu Qin Ma

In-situ combustion (fire flooding) is one of important methods to improve heavy oil recovery ratio, utilizing the reservoir itself heavy component burning as dynamic displacement of crude oil, improving the crude oil character, flooding efficiency is high, applicability is extensive, and other recover techniques can not match. But the technical support is difficult and broad, and is the key in restricting the effect of in-situ combustion, especially for the effectiveness of development. With the increase of fire flooding development, flowing wells turns to artificial lifting wells, the gas production increases deeply, and the lifting technology faces a lot of new problems. Aiming at the problems of combustion in-situ, the relevant technologies were researched, then some methods and measures suiting to heavy oil fire flooding technology were proposed. And it provided reference for researching of deep heavy oil fire flooding lifting technology in the future.


SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 145-156 ◽  
Author(s):  
Siyuan Yi ◽  
Tayfun Babadagli ◽  
Huazhou Andy Li

Summary Late cycles of cyclic steam stimulation (CSS) are characterized by a decreasing heavy-oil recovery and an increasing water cut. Nickel nanoparticles can be used to promote aquathermolysis reactions between water and heavy oil in steam-injection processes, thereby increasing the recovery factor (RF). In this paper, detailed investigations were performed to determine the optimal operational parameters and answers to the following questions: What is the optimal concentration of nickel nanoparticles for promoting aquathermolysis under high steam temperature? Can we improve oil recovery at lower steam temperatures with the presence of nickel nanoparticles? What effect does the penetration depth of nickel nanoparticles have on the final oil recovery? CSS experiments were conducted between temperatures of 150 and 220°C. Steam generated under these temperatures was injected into sandpacks saturated with Mexican heavy oil. Powder-form nickel nanoparticle was introduced into this process to boost the oil production. In an attempt to obtain the optimal concentration, different concentrations were tested. Next, oil sands without any nanoparticle additives were first added into the cylinder. Then, only one-third of the sandpack was mixed with nickel nanoparticles near the injection port. Experiments were executed to study the effects of temperature, nickel concentrations, and nanoparticle-penetration depth on the ultimate oil recovery and produced oil/water ratios after each cycle. Produced-oil quality and emulsion formation were evaluated with gas-chromatography (GC) analysis, viscosity measurements, saturates/asphaltenes/resins/aromatics (SARA) tests, and microscopic analysis of the effluents. Experimental results show that the best concentration of nickel nanoparticles, which gives the highest ultimate oil RF, is 0.20 wt% of initial oil in place (IOIP) under 220°C, whereas the nickel concentration of 0.05 wt% provides the highest RFs at the early stages. A lower temperature of 150°C provides a much-lower RF than 220°C, which is mainly because of a lower level of aquathermolysis reactions at 150°C. By analyzing the compositions of produced oil and gas samples with GC and SARA tests, we confirm that the major reaction mechanism during the aquathermolysis reaction is the breakage of the carbon/sulfur (C/S) bond; the nickel nanoparticles can act as catalyst for the aquathermolysis reaction; and the catalytic effect becomes less remarkable from cycle to cycle. One run of the experiment to test the effect of particle-penetration depth revealed that the nickel nanoparticles distributed near the injection port greatly contributed to the ultimate RF.


Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 532 ◽  
Author(s):  
Alexey V. Vakhin ◽  
Firdavs A. Aliev ◽  
Irek I. Mukhamatdinov ◽  
Sergey A. Sitnov ◽  
Andrey V. Sharifullin ◽  
...  

This paper investigates aquathermolysis of heavy oil in carbonate reservoir rocks from Boca de Jaruco, which is developed by the cyclic steam stimulation method. The nickel-based catalyst precursor was introduced in order to intensify the conversion processes of heavy oil components. The active form of such catalysts—nickel sulfides—are achieved after steam treatment of crude oil at reservoir conditions. The experiments were carried out on a rock sample extracted from the depth of 1900 m. Changes in composition and structure of heavy oil after the conversion were identified using SARA-analysis, Gas Chromatography-Mass Spectroscopy of saturated fractions, FTIR spectroscopy of saturated fractions, and MALDI of resins. It is revealed that catalyst particles provide a reduction in the content of resins and asphaltenes due to the destruction of carbon-heteroatom bonds. Moreover, the destruction of C=Carom. bonds and interactions with aromatic rings are heightened. In contrast, the results of experiments in the absence of catalysts exposed polymerization and condensation of aromatic rings. The most remarkable result to emerge from the thermo-catalytic influence is the irreversible viscosity reduction of produced crude oil enhancing the oil recovery factor. Moreover, the introduction of catalysts increases the gas factor due to additional gas generation as a result of aquathermolysis reactions. The yield of methane gas is significantly high in the experimental runs with oil-saturated rocks rather than crude oil experiments. The gas factor reaches 45 m3/ton.


2009 ◽  
Vol 12 (04) ◽  
pp. 508-517 ◽  
Author(s):  
Alexandre Lapene ◽  
Louis Castanier ◽  
Gerald Debenest ◽  
Michel Yves Quintard ◽  
Arjan Matheus Kamp ◽  
...  

Summary In-Situ Combustion. In-situ combustion (ISC) is an enhanced oil-recovery method. Enhanced oil recovery is broadly described as a group of techniques used to extract crude oil from the subsurface by the injection of substances not originally present in the reservoir with or without the introduction of extraneous energy (Lake 1996). During ISC, a combustion front is propagated through the reservoir by injected air. The heat generated results in higher temperatures leading to a reduction in oil viscosity and an increase of oil mobility. There are two types of ISC processes, dry and wet combustion. In the dry-combustion process, a large part of the heat generated is left unused downstream of the combustion front in the burned-out region. During the wet-injection process, water is co-injected with the air to recover some of the heat remaining behind the combustion zone. ISC is a very complex process. From a physical point of view, it is a problem coupling transport in porous media, chemistry, and thermodynamics. It has been studied for several decades, and the technique has been applied in the field since the 1950s. The complexity was not well understood earlier by ISC operators. This resulted in a high rate of project failures in the 1960s, and contributed to the misconception that ISC is a problem-prone process with low probability of success. However, ISC is an attractive oil-recovery process and capable of recovering a high percentage of oil-in-place, if the process is designed correctly and implemented in the right type of reservoir (Sarathi 1999). This paper investigates the effect of water on the reaction kinetics of a heavy oil by way of ramped temperature oxidation under various conditions. Reactions. Earlier studies about reaction kinetic were conducted by Bousaid and Ramey (1968), Weijdema (1968), Dabbous and Fulton (1974), and Thomas et al. (1979). In these experiments, temperature of a sample of crude oil and solid matrix was increased over time or kept constant. The produced gas was analyzed to determine the concentrations of outlet gases, such as carbon dioxide, carbon monoxide, and oxygen. This kind of studies shows two types of oxidation reactions, the Low-Temperature Oxidation (LTO) and the High-Temperature Oxidation (HTO) (Burger and Sahuquet 1973; Fassihi et al. 1984a; Mamora et al. 1993). In 1984, Fassihi et al. (1984b) presented an analytical method to obtain kinetics parameters. His method requires several assumptions.


Sign in / Sign up

Export Citation Format

Share Document