scholarly journals Elevated Serum Macrophage Migration Inhibitory Factor (MIF) Concentrations in Chronic Kidney Disease (CKD) Are Associated with Markers of Oxidative Stress and Endothelial Activation

2009 ◽  
Vol 15 (3-4) ◽  
pp. 70-75 ◽  
Author(s):  
Annette Bruchfeld ◽  
Juan J. Carrero ◽  
Abdul R. Qureshi ◽  
Bengt Lindholm ◽  
Peter Barany ◽  
...  
2020 ◽  
Vol 64 (2) ◽  
Author(s):  
Carla Loreto ◽  
Rosario Caltabiano ◽  
Adriana Carol Eleonora Graziano ◽  
Sergio Castorina ◽  
Claudia Lombardo ◽  
...  

Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.


2020 ◽  
Vol 9 (9) ◽  
pp. 2936
Author(s):  
Luisa Averdunk ◽  
Jürgen Bernhagen ◽  
Karl Fehnle ◽  
Harald Surowy ◽  
Hermann-Josef Lüdecke ◽  
...  

Background: Macrophage Migration Inhibitory Factor (MIF) is highly elevated after cardiac surgery and impacts the postoperative inflammation. The aim of this study was to analyze whether the polymorphisms CATT5–7 (rs5844572/rs3063368,“-794”) and G>C single-nucleotide polymorphism (rs755622,-173) in the MIF gene promoter are related to postoperative outcome. Methods: In 1116 patients undergoing cardiac surgery, the MIF gene polymorphisms were analyzed and serum MIF was measured by ELISA in 100 patients. Results: Patients with at least one extended repeat allele (CATT7) had a significantly higher risk of acute kidney injury (AKI) compared to others (23% vs. 13%; OR 2.01 (1.40–2.88), p = 0.0001). Carriers of CATT7 were also at higher risk of death (1.8% vs. 0.4%; OR 5.12 (0.99–33.14), p = 0.026). The GC genotype was associated with AKI (20% vs. GG/CC:13%, OR 1.71 (1.20–2.43), p = 0.003). Multivariate analyses identified CATT7 predictive for AKI (OR 2.13 (1.46–3.09), p < 0.001) and death (OR 5.58 (1.29–24.04), p = 0.021). CATT7 was associated with higher serum MIF before surgery (79.2 vs. 50.4 ng/mL, p = 0.008). Conclusion: The CATT7 allele associates with a higher risk of AKI and death after cardiac surgery, which might be related to chronically elevated serum MIF. Polymorphisms in the MIF gene may constitute a predisposition for postoperative complications and the assessment may improve risk stratification and therapeutic guidance.


2009 ◽  
Vol 32 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Papit Nattee ◽  
Sittisak Honsawek ◽  
Voranush Chongsrisawat ◽  
Paisarn Vejchapipat ◽  
Apiradee Thamboonlers ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e57181 ◽  
Author(s):  
Romina A. Cutrullis ◽  
Patricia B. Petray ◽  
Edgardo Schapachnik ◽  
Rubén Sánchez ◽  
Miriam Postan ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hiroshi Yukitake ◽  
Masayuki Takizawa ◽  
Haruhide Kimura

Oxidative stress is involved in pathophysiology and pathological conditions of numerous human diseases. Thus, understanding the mechanisms underlying the redox homeostasis in cells and organs is valuable for discovery of therapeutic drugs for oxidative stress-related diseases. Recently, by applying chemical biology approach with an ARE activator, BTZO-1, we found macrophage migration inhibitory factor (MIF) as a new regulator of antioxidant response element- (ARE-) mediated gene transcription. BTZO-1 and its active derivatives bound to MIF and protected cells and organs from oxidative insults via ARE activation in animal models with oxidative stress such as ischemia/reperfusion injury, inflammatory bowel diseases, and septic shock. In this review, we briefly highlight key findings in understanding the MIF-ARE system.


Sign in / Sign up

Export Citation Format

Share Document