scholarly journals Integrated analysis of miRNA and mRNA expression profiles in testes of Duroc and Meishan boars

2020 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 ( PLCβ1) gene was verified to be a target of ssc-mir-423-5p . Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.

2019 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 ( PLCβ1) gene was verified to be a target of ssc-mir-423-5p . Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2020 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2020 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2020 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2020 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hai Lan Yao ◽  
Mi Liu ◽  
Wen Jun Wang ◽  
Xin Ling Wang ◽  
Juan Song ◽  
...  

AbstractMicroRNAs (miRNAs) play an important role in regulating gene expression in multiple biological processes and diseases. Thus, to understand changes in miRNA during CVB3 infection, specific miRNA expression profiles were investigated at 3 h, 6 h, and 9 h postinfection in HeLa cells by small-RNA high-throughput sequencing. Biological implications of 68 differentially expressed miRNAs were analyzed through GO and KEGG pathways. Interaction networks between 34 known highly differentially expressed miRNAs and targets were constructed by mirDIP and Navigator. The predicted targets showed that FAM135A, IKZF2, PLAG1, ZNF148, PHC3, LCOR and DYRK1A, which are associated with cellular differentiation and transcriptional regulation, were recognized by 8 miRNAs or 9 miRNAs through interactional regulatory networks. Seven target genes were confirmed by RT-qPCR. The results showed that the expression of DYRK1A, FAM135A, PLAG1, ZNF148, and PHC3 were obviously inhibited at 3 h, 6 h, and 9 h postinfection. The expression of LCOR did not show a significant change, and the expression of IKZF2 increased gradually with prolonged infection time. Our findings improve the understanding of the pathogenic mechanism of CVB3 infection on cellular differentiation and development through miRNA regulation, which has implications for interventional approaches to CVB3-infection therapy. Our results also provide a new method for screening target genes of microRNA regulation in virus-infected cells.


2018 ◽  
Author(s):  
yuanshuai Fu ◽  
Zhe Xu ◽  
Zaizhong Chen ◽  
Bin Wen ◽  
Jianzhong Gao

The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. Phenotype investigation indicated that there are no significant differences in appearance between males and females of the discus fish. To better understand the sexual development mechanisms and obtain a high efficiency sex identification method in the artificial reproduction process of the discus fish, we constructed six cDNA libraries from three adult testes and three adult ovaries, and perform RNA-sequencing for identifying sex-biased candidate genes, microRNA (miRNA), and metabolic pathway using the Illumina Hiseq 4000. A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries, and 8 differentially expressed unigenes were validated by quantitative Real-Time PCR (qPCR). A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries, and 7 differentially expressed miRNAs and one non-differential miRNA were validated by qPCR. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 important miRNA-mRNA interaction pairs, which may be important candidates for sex-related miRNAs and sex-related genes in the discus fish. Some of vital sex-related metabolic pathways were also identified that may play key roles in regulating gonad development of the discus fish. These results can provide important insights to better understand molecular mechanisms for sexual dimorphism in gonads development.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Junfu Guo ◽  
Xiangnan Li ◽  
Lanying Miao ◽  
Hongwei Sun ◽  
Xia Gao ◽  
...  

Objective. The present study aimed to investigate the potential mechanism underlying the antitumor effect of Si Jun Zi Tang (SJZT) decoction on gastric cancer. Methods. Twelve human gastric cancer SGC7901 cell xenograft nude mouse models were established. The mice were randomly divided into the Model group and SJZT group. SJZT exerted significant antitumor effects after 21 days of decoction administration. High-throughput sequencing was used to analyze the microRNA (miRNA) expression profiles of tumor tissues. Bioinformatics analysis was performed to provide further information regarding the differentially expressed miRNAs. Five representative differentially expressed miRNAs and four predicted target genes were further validated using quantitative real-time reverse transcription PCR (qRT-PCR). Results. We identified 33 miRNAs that were differentially expressed in the SJZT group compared with the Model group. Among them, 32 miRNAs were upregulated and 1 miRNA was downregulated. Bioinformatic analysis showed that most of miRNAs acted as tumor suppressors and their target genes participated in multiple signaling pathways, including the PI3K/Akt signaling pathway, microRNAs in cancer, and Wnt signaling pathway. The qRT-PCR result confirmed that miR-223-3p, miR-205-5p, miR-147b-3p, and miR-223-5p were overexpressed and their respective paired target genes FUT9, POU2F1, MUC4, and RAB14 mRNA were obviously downregulated in the SJZT group compared with those in the Model group. Network analysis revealed that miR-223-3p and miR-205-5p shared two targets POU2F1 (encoding POU class 2 homeobox 1) and FUT9 (encoding fucosyltransferase 9), suggesting they have a common role in certain pathways. Conclusion. This study provided novel insights into the anticancer mechanism of SJZT against gastric cancer, which might be partly related to the modulation of miRNA expression and their target pathways in tumors.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3133-3133
Author(s):  
Hanyang Lin ◽  
Katharina Rothe ◽  
Jens Ruschmann ◽  
Oleh Petriv ◽  
Kieran O'Neill ◽  
...  

Abstract Imatinib mesylate (IM) and other ABL tyrosine kinase inhibitors (TKIs) have had a major impact on early phase CML patient outcomes. However, they are rarely curative and initial and acquired TKI resistance remain challenges. This is attributed to the finding that chronic phase CML stem cells are innately more resistant to IM and other TKIs than the bulk of the more mature cells they generate. To identify differentially expressed and new miRNAs in CD34+ CML stem/progenitor cells that could be potential biomarkers and therapeutic targets, we used Illumina Deep Sequencing to obtain absolute miRNA expression profiles of highly purified CD34+ cells obtained at diagnosis from three CML patients who were classified retrospectively, after IM therapy, as IM-responders and three as IM-nonresponders. CD34+ cells isolated from five normal bone marrow (NBM) samples were similarly analyzed as controls. Bioconductor DESeq analysis revealed 63 differentially expressed miRNAs in the CD34+ cells from CML and NBM samples (P<0.05). Interestingly, 12 of these were differentially expressed in CD34+ cells from the IM-responders and nonresponders. Most of the 63 differentially expressed miRNAs identified were present at reduced levels in the CD34+ CML cells as compared to NBM, but 17 were increased. In addition, 34 novel miRNAs were identified in the CD34+ CML stem/progenitor cells. We next validated sequencing data in CD34+ cells from IM-responders (n=12), IM-nonresponders (n=10) and normal individuals (n=11) using a high-throughput quantitative microfluidic device. These studies confirmed the differential expression in CD34+ CML cells of 32 of the 63 identified miRNAs (P<0.05), including an increased level of oncomirs miR-155 and miR-17-92, and a decreased level of the tumor suppressors, miR-145, miR-151, and miR-452. Importantly, we detected significant changes in some of these miRNAs in CD34+ cells from CML patients after three months of nilotinib (NL) treatment (23 normalized after three months of NL treatment, whereas 10 showed little change). To further correlate miRNA profiles with corresponding mRNA expression changes, and to identify potential target genes, RNA-seq was performed on the same RNA samples. Bioconductor RmiR analysis was performed to match miRNA target genes whose expression was inversely correlated with the expression of the deregulated miRNAs based on three of six prediction algorithms (mirBase, TargetScan, miRanda, tarBase, mirTarget2, and PicTar). We identified 1,210 differentially expressed mRNAs that are predicted targets of the deregulated miRNAs in the comparison of CML and NBM data. Strikingly, only seven differentially expressed mRNAs were predicted targets of the deregulated miRNAs identified from a comparison of the IM-responders and nonresponders. Most of these are predicted to have roles in regulation of the cell cycle, MAPK signaling and TGF-beta signaling pathways by DAVID Bioinformatics Resources, which clusters predicted target genes to known KEGG pathways. Thus, aberrant, differentially expressed miRNAs and target genes identified in primitive CML stem/progenitor cells may serve as useful biomarkers to predict clinical response of CML patients to TKI therapy, and may ultimately lead to identification of potential therapeutic targets for improved treatment of CML patients. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document