scholarly journals Long-term, in toto live imaging of the developing mouse heart

Author(s):  
Yanzhu Yue ◽  
Xin Li ◽  
Youdong Zhang ◽  
Aibin He

Abstract Mapping holistic cell behaviors sculpting mammalian heart has been a goal, but so far only successes in transparent invertebrates and lower vertebrates. Using a live-imaging system comprising a customized vertical light-sheet microscope equipped with a culture module, a heartbeat-gated imaging strategy, and a digital image processing framework, we realized imaging of developing mouse hearts with uninterrupted cell lineages for up to 1.5 days. Four-dimensional landscapes of cell behaviors revealed a blueprint for ventricle chamber formation in which biased outward migration of outermost cardiomyocytes coupled with cell intercalation and horizontal division. The trabeculae, an inner muscle architecture, was developed through early fate segregation and transmural cell arrangement involving both oriented cell division and directional migration. Thus, live-imaging reconstruction affords a transformative means for deciphering mammalian organogenesis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urmas Roostalu ◽  
Louise Thisted ◽  
Jacob Lercke Skytte ◽  
Casper Gravesen Salinas ◽  
Philip Juhl Pedersen ◽  
...  

AbstractAngiotensin converting enzyme inhibitors, among them captopril, improve survival following myocardial infarction (MI). The mechanisms of captopril action remain inadequately understood due to its diverse effects on multiple signalling pathways at different time periods following MI. Here we aimed to establish the role of captopril in late-stage post-MI remodelling. Left anterior descending artery (LAD) ligation or sham surgery was carried out in male C57BL/6J mice. Seven days post-surgery LAD ligated mice were allocated to daily vehicle or captopril treatment continued over four weeks. To provide comprehensive characterization of the changes in mouse heart following MI a 3D light sheet imaging method was established together with automated image analysis workflow. The combination of echocardiography and light sheet imaging enabled to assess cardiac function and the underlying morphological changes. We show that delayed captopril treatment does not affect infarct size but prevents left ventricle dilation and hypertrophy, resulting in improved ejection fraction. Quantification of lectin perfused blood vessels showed improved vascular density in the infarct border zone in captopril treated mice in comparison to vehicle dosed control mice. These results validate the applicability of combined echocardiographic and light sheet assessment of drug mode of action in preclinical cardiovascular research.


Author(s):  
Emilio J. Gualda ◽  
Matteo Bernardello ◽  
Maria Marsal ◽  
Pablo Loza Alvarez

2018 ◽  
Author(s):  
Dong-Yuan Chen ◽  
Justin Crest ◽  
Sebastian J. Streichan ◽  
David Bilder

ABSTRACTOrgans are sculpted by extracellular as well as cell-intrinsic forces, but how collective cell dynamics are orchestrated in response to microenvironmental cues is poorly understood. Here we apply advanced image analysis to reveal ECM-responsive cell behaviors that drive elongation of the Drosophila follicle, a model 3D system in which basement membrane stiffness instructs tissue morphogenesis. Through in toto morphometric analyses of WT and ‘round egg’ mutants, we find that neither changes in average cell shape nor oriented cell division are required for appropriate organ shape. Instead, a major element is a reorientation of elongated cells at the follicle anterior. Polarized reorientation is regulated by mechanical cues from the basement membrane, which are transduced by the Src tyrosine kinase to alter junctional E-cadherin trafficking. This mechanosensitive cellular behavior represents a conserved mechanism that can elongate ‘edgeless’ tubular epithelia in a process distinct from those that elongate bounded, planar epithelia.


2019 ◽  
Vol 39 (4) ◽  
pp. 0412010
Author(s):  
程虎 Cheng Hu ◽  
李微 Li Wei ◽  
郭文平 Guo Wenping ◽  
杨克成 Yang Kecheng

2011 ◽  
Vol 38 (1) ◽  
pp. 0109001
Author(s):  
韩宏伟 Han Hongwei ◽  
张晓晖 Zhang Xiaohui ◽  
葛卫龙 Ge Weilong

2016 ◽  
Vol 45 (7) ◽  
pp. 0726003
Author(s):  
游瑞蓉 You Ruirong ◽  
王新伟 Wang Xinwei ◽  
周 燕 Zhou Yan

2010 ◽  
Vol 18 (20) ◽  
pp. 21147 ◽  
Author(s):  
ChingSeong Tan ◽  
Gerald Seet ◽  
Andrzej Sluzek ◽  
Xin Wang ◽  
Chai Tong Yuen ◽  
...  

Author(s):  
Francesco Pampaloni ◽  
Laura Knuppertz ◽  
Andrea Hamann ◽  
Heinz D. Osiewacz ◽  
Ernst H. K. Stelzer

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1255
Author(s):  
Norio Yamashita ◽  
Masahiko Morita ◽  
Hideo Yokota ◽  
Yuko Mimori-Kiyosue

From cells to organisms, every living system is three-dimensional (3D), but the performance of fluorescence microscopy has been largely limited when attempting to obtain an overview of systems’ dynamic processes in three dimensions. Recently, advanced light-sheet illumination technologies, allowing drastic improvement in spatial discrimination, volumetric imaging times, and phototoxicity/photobleaching, have been making live imaging to collect precise and reliable 3D information increasingly feasible. In particular, lattice light-sheet microscopy (LLSM), using an ultrathin light-sheet, enables whole-cell 3D live imaging of cellular processes, including mitosis, at unprecedented spatiotemporal resolution for extended periods of time. This technology produces immense and complex data, including a significant amount of information, raising new challenges for big image data analysis and new possibilities for data utilization. Once the data are digitally archived in a computer, the data can be reused for various purposes by anyone at any time. Such an information science approach has the potential to revolutionize the use of bioimage data, and provides an alternative method for cell biology research in a data-driven manner. In this article, we introduce examples of analyzing digital mitotic spindles and discuss future perspectives in cell biology.


Sign in / Sign up

Export Citation Format

Share Document