scholarly journals The impact of long dry periods on the aboveground biomass in tropical forests: 20 years of monitoring

2020 ◽  
Author(s):  
Milton Serpa de Meira-Junior ◽  
José Roberto Rodrigues Pinto ◽  
Natália Oliveira Ramos ◽  
Eder Pereira Miguel ◽  
Ricardo de Oliveira Gaspar ◽  
...  

Abstract Background Long-term studies of community and population dynamics indicate that abrupt disturbances often catalyse changes in vegetation and carbon stocks. These disturbances include the opening of clearings, flooding, rainfall seasonality, and drought, as well as fire and direct human disturbance. Such events may be super-imposed on longer-term trends in disturbance, such as those associated with climate change (heating, drying), as well as resources. Intact neotropical forests have recently experienced increased drought frequency and fire, on top of pervasive increases in atmospheric CO 2 concentrations, but we lack long-term records of responses to such changes especially in the critical transitional areas at the interface of forest and savanna biomes. Here, we present results from 20 years monitoring a valley forest (moist tropical forest outlier) in central Brazil. The forest has experienced multiple drought events and includes plots which have and which have not experienced fire. We focus on how forest structure (stem density and aboveground biomass carbon) and dynamics (stem and biomass mortality and recruitment) have responded to these disturbance regimes. Results Overall, the biomass carbon stock increased due to the growth of the trees already present in the forest, without any increase in the overall number of tree stems. Over time, both recruitment and especially mortality of trees tended to increase, and periods of prolonged drought in particular resulted in increased mortality rates of larger trees. This increased mortality was in turn responsible for a decline in aboveground carbon toward the end of the monitoring period. Fire in 2010, which occurred in only some of our plots, tended to exacerbate the trends of increasing mortality and losses of biomass carbon. Conclusion Prolonged droughts influence the mortality of large trees, leading to a decline in aboveground carbon stocks. Here, and in other neotropical forests, recent droughts are capable of shutting down and reversing biomass carbon sinks. These new results add to evidence that anthropogenic climate changes are already adversely impacting tropical forests.

2020 ◽  
Author(s):  
Milton Serpa de Meira-Junior ◽  
José Roberto Rodrigues Pinto ◽  
Natália Oliveira Ramos ◽  
Eder Pereira Miguel ◽  
Ricardo de Oliveira Gaspar ◽  
...  

Abstract Background Long-term studies of community and population dynamics indicate that abrupt disturbances often catalyse changes in vegetation and carbon stocks. These disturbances include the opening of clearings, flooding, rainfall seasonality, and drought, as well as fire and direct human disturbance. Such events may be super-imposed on longer-term trends in disturbance, such as those associated with climate change (heating, drying), as well as resources. Intact neotropical forests have recently experienced increased drought frequency and fire, on top of pervasive increases in atmospheric CO2 concentrations, but we lack long-term records of responses to such changes especially in the critical transitional areas at the interface of forest and savanna biomes. Here, we present results from 20 years monitoring a valley forest (moist tropical forest outlier) in central Brazil. The forest has experienced multiple drought events and includes plots which have and which have not experienced fire. We focus on how forest structure (stem density and aboveground biomass carbon) and dynamics (stem and biomass mortality and recruitment) have responded to these disturbance regimes. ResultsOverall, the biomass carbon stock increased due to the growth of the trees already present in the forest, without any increase in the overall number of tree stems. Over time, both recruitment and especially mortality of trees tended to increase, and periods of prolonged drought in particular resulted in increased mortality rates of larger trees. This increased mortality was in turn responsible for a decline in aboveground carbon toward the end of the monitoring period. Fire in 2010, which occurred in only some of our plots, tended to exacerbate the trends of increasing mortality and losses of biomass carbon. Conclusion Prolonged droughts influence the mortality of large trees, leading to a decline in aboveground carbon stocks. Here, and in other neotropical forests, recent droughts are capable of shutting down and reversing biomass carbon sinks. These new results add to evidence that anthropogenic climate changes are already adversely impacting tropical forests.


2022 ◽  
Author(s):  
Jiaying Zhang ◽  
Rafael L. Bras ◽  
Marcos Longo ◽  
Tamara Heartsill Scalley

Abstract. Hurricanes commonly disturb and damage tropical forests. It is predicted that changes in climate will result in changes in hurricane frequency and intensity. Modeling is needed to investigate the potential response of forests to future disturbances. Unfortunately, existing models of forests dynamics are not presently able to account for hurricane disturbances. We implement the Hurricane Disturbance in the Ecosystem Demography model (ED2) (ED2-HuDi). The hurricane disturbance includes hurricane-induced immediate mortality and subsequent recovery modules. The parameterizations are based on observations at the Bisley Experimental Watersheds (BEW) in the Luquillo Experimental Forest in Puerto Rico. We add one new plant functional type (PFT) to the model—Palm, as palms cannot be categorized into one of the current existing PFTs and are known to be an abundant component of tropical forests worldwide. The model is calibrated with observations at BEW using the generalized likelihood uncertainty estimates (GLUE) approach. The optimal simulation obtained from GLUE has a mean relative error of −21 %, −12 %, and −15 % for stem density, basal area, and aboveground biomass, respectively. The optimal simulation also agrees well with the observation in terms of PFT composition (+1%, −8 %, −2 %, and +9 % differences in the percentages of Early, Mid, Late, and Palm PFTs, respectively) and size structure of the forest (+0.8 % differences in the percentage of large stems). Lastly, using the optimal parameter set, we study the impact of forest initial condition on the recovery of the forest from a single hurricane disturbance. The results indicate that, compared to a no-hurricane scenario, a single hurricane disturbance has little impact on forest structure (+1 % change in the percentage of large stems) and composition (< 1 % change in the percentage of each of the four PFTs) but leads to 5 % higher aboveground biomass after 80 years of succession. The assumption of a less severe hurricane disturbance leads to a 4 % increase in aboveground biomass.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lawrence H. Tanner ◽  
Megan T. Wilckens ◽  
Morgan A. Nivison ◽  
Katherine M. Johnson

We measured carbon stocks at two forest reserves in the cloud forest region of Monteverde, comparing cleared land, experimental secondary forest plots, and mature forest at each location to assess the effectiveness of reforestation in sequestering biomass and soil carbon. The biomass carbon stock measured in the mature forest at the Monteverde Institute is similar to other measurements of mature tropical montane forest biomass carbon in Costa Rica. Local historical records and the distribution of large trees suggest a mature forest age of greater than 80 years. The forest at La Calandria lacks historical documentation, and dendrochronological dating is not applicable. However, based on the differences in tree size, above-ground biomass carbon, and soil carbon between the Monteverde Institute and La Calandria sites, we estimate an age difference of at least 30 years of the mature forests. Experimental secondary forest plots at both sites have accumulated biomass at lower than expected rates, suggesting local limiting factors, such as nutrient limitation. We find that soil carbon content is primarily a function of time and that altitudinal differences between the study sites do not play a role.


1997 ◽  
Vol 13 (5) ◽  
pp. 697-708 ◽  
Author(s):  
M. Delaney ◽  
S. Brown ◽  
A. E. Lugo ◽  
A. Torres-Lezama ◽  
N. Bello Quintero

ABSTRACTOne of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in the biomass, soil and necromass for 23 long-term permanent forest plots in five life zones of Venezuela to determine how C was partitioned among these components across a range of environments. Aboveground biomass C ranged from 70 to 179 Mg ha−1 and soil C from 125 to 257 Mg ha−1, and they represented the two largest C components in all plots. The C in fine litter (2.4 to 5.2 Mg ha−1), dead wood (2.4 to 21.2 Mg ha−1) and roots (23.6 to 38.0 Mg ha−1) accounted for less than 13% of the total C. The total amount of C among life zones ranged from 302 to 488 Mg ha−1, and showed no clear trend with life zone. In three of the five life zones, more C was found in the dead (soil, litter, dead wood) than in the live (biomass) components (dead to live ratios of 1.3 to 2.3); the lowland moist and moist transition to dry life zones had dead to live ratios of less than one. Results from this research suggest that for most life zones, an amount equivalent to between 20 and 58% of the aboveground biomass is located in necromass and roots. These percentages coupled with reliable estimates of aboveground biomass from forest inventories enable a more complete estimation of the C content of tropical forests to be made.


2018 ◽  
Vol 15 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Anna T. Trugman ◽  
David Medvigy ◽  
William A. Hoffmann ◽  
Adam F. A. Pellegrini

Abstract. Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.


Ecosystems ◽  
2014 ◽  
Vol 17 (7) ◽  
pp. 1138-1150 ◽  
Author(s):  
James D. M. Speed ◽  
Vegard Martinsen ◽  
Atle Mysterud ◽  
Jan Mulder ◽  
Øystein Holand ◽  
...  

2021 ◽  
Vol 14 (6) ◽  
pp. 3789-3812
Author(s):  
Jaber Rahimi ◽  
Expedit Evariste Ago ◽  
Augustine Ayantunde ◽  
Sina Berger ◽  
Jan Bogaert ◽  
...  

Abstract. West African Sahelian and Sudanian ecosystems provide essential services to people and also play a significant role within the global carbon cycle. However, climate and land use are dynamically changing, and uncertainty remains with respect to how these changes will affect the potential of these regions to provide food and fodder resources or how they will affect the biosphere–atmosphere exchange of CO2. In this study, we investigate the capacity of a process-based biogeochemical model, LandscapeDNDC, to simulate net ecosystem exchange (NEE) and aboveground biomass of typical managed and natural Sahelian and Sudanian savanna ecosystems. In order to improve the simulation of phenology, we introduced soil-water availability as a common driver of foliage development and productivity for all of these systems. The new approach was tested by using a sample of sites (calibration sites) that provided NEE from flux tower observations as well as leaf area index data from satellite images (MODIS, MODerate resolution Imaging Spectroradiometer). For assessing the simulation accuracy, we applied the calibrated model to 42 additional sites (validation sites) across West Africa for which measured aboveground biomass data were available. The model showed good performance regarding biomass of crops, grass, or trees, yielding correlation coefficients of 0.82, 0.94, and 0.77 and root-mean-square errors of 0.15, 0.22, and 0.12 kg m−2, respectively. The simulations indicate aboveground carbon stocks of up to 0.17, 0.33, and 0.54 kg C ha−1 m−2 for agricultural, savanna grasslands, and savanna mixed tree–grassland sites, respectively. Carbon stocks and exchange rates were particularly correlated with the abundance of trees, and grass biomass and crop yields were higher under more humid climatic conditions. Our study shows the capability of LandscapeDNDC to accurately simulate carbon balances in natural and agricultural ecosystems in semiarid West Africa under a wide range of conditions; thus, the model could be used to assess the impact of land-use and climate change on the regional biomass productivity.


2020 ◽  
Vol 12 (4) ◽  
pp. 638 ◽  
Author(s):  
Koen Hufkens ◽  
Thalès de Haulleville ◽  
Elizabeth Kearsley ◽  
Kim Jacobsen ◽  
Hans Beeckman ◽  
...  

Given the impact of tropical forest disturbances on atmospheric carbon emissions, biodiversity, and ecosystem productivity, accurate long-term reporting of Land-Use and Land-Cover (LULC) change in the pre-satellite era (<1972) is an imperative. Here, we used a combination of historical (1958) aerial photography and contemporary remote sensing data to map long-term changes in the extent and structure of the tropical forest surrounding Yangambi (DR Congo) in the central Congo Basin. Our study leveraged structure-from-motion and a convolutional neural network-based LULC classifier, using synthetic landscape-based image augmentation to map historical forest cover across a large orthomosaic (~93,431 ha) geo-referenced to ~4.7 ± 4.3 m at submeter resolution. A comparison with contemporary LULC data showed a shift from previously highly regular industrial deforestation of large areas to discrete smallholder farming clearing, increasing landscape fragmentation and providing opportunties for substantial forest regrowth. We estimated aboveground carbon gains through reforestation to range from 811 to 1592 Gg C, partially offsetting historical deforestation (2416 Gg C), in our study area. Efforts to quantify long-term canopy texture changes and their link to aboveground carbon had limited to no success. Our analysis provides methods and insights into key spatial and temporal patterns of deforestation and reforestation at a multi-decadal scale, providing a historical context for past and ongoing forest research in the area.


Sign in / Sign up

Export Citation Format

Share Document