scholarly journals The Activation of NLRP3 Inflammasome Potentiates the Immunomodulatory Abilities of Mesenchymal Stem Cells in Murine Colitis Model

2020 ◽  
Author(s):  
Ji-Su Ahn ◽  
Yoojin Seo ◽  
Su-Jeong Oh ◽  
Ji Won Yang ◽  
Ye Young Shin ◽  
...  

Abstract Background Inflammasomes are cytosolic, multiprotein complexes which act at the frontline of the immune responses by recognizing pathogen or danger-associated molecular patterns of pathogens or abnormal host molecules. Mesenchymal stem cells (MSCs) have been reported to possess multipotency to differentiate into various cell types and immunoregulatory effects which make them a promising treatment for regenerative medicine and immune-related diseases, respectively. However, little is known about the expression and role of the inflammasome in adult stem cells. In this study, we investigated the expression and functional regulation of NLRP3 inflammasome in human umbilical cord blood-derived MSCs (hUCB-MSCs). Methods The expression of NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome was detected in hUCB-MSCs. Cell proliferation, death and differentiation were analyzed after NLRP3 inflammasome activation. To investigate the changes in immunoregulatory functions of hUCB-MSCs, naïve or NLRP3 inflammasome-stimulated cells were infused into chemically induced colitic mice and symptoms were monitored. Results NLRP3 inflammasome activation suppressed the differentiation of hUCB-MSCs into osteoblasts, which was restored when the expression of adaptor proteins for inflammasome assembly was inhibited. Moreover, the suppressive effects of MSCs on T cell responses and the macrophage activation were augmented in response to NLRP3 activation. In vivo studies using colitic mice revealed that the protective abilities of hUCB-MSCs increased after NLRP3 stimulation. Conclusions Our findings suggest that the NLRP3 inflammasome components are expressed in hUCB-MSCs and its activation can regulate the differentiation capability and the immunomodulatory effects of hUCB-MSCs.

2021 ◽  
Author(s):  
Haijin Lv ◽  
Xiaofeng Yuan ◽  
Jiebin Zhang ◽  
Tongyu Lu ◽  
Jia Yao ◽  
...  

Abstract Objectives: Acute lung injury (ALI) remains one of the common causes of morbidity and mortality worldwide, so far, without any effective therapeutic approach. Previous researches have revealed that topical administration of umbilical cord-derived mesenchymal stem cells (UC-MSCs) can attenuate pathological changes in experimental acute lung injury. Heat shock (HS) pretreatment has been identified as a method to enhance survival and function of cells. The present study aimed to assess whether HS-pretreated mesenchymal stem cells (MSCs) could strengthen the immunomodulation and recovery from ALI. Materials and Methods: HS pretreatment was defined 42℃ for 1h, the changes of biological characteristics and the secreted functions were detected. In the mouse model of ALI, we intranasally dripped the pretreated UC-MSCs in vivo, confirmed their therapeutic effects and detected the phenotypes of macrophages in bronchoalveolar lavage fluid (BALF). To elucidate their mechanisms, we co-cultured the pretreated UC-MSCs with macrophages in vitro, and the expression levels of inflammasome-related proteins in macrophages were assessed. Finally, Apoptozole was used for further determine the role of HSP70 in HS-pretreated UC-MSCs-based therapy. Results: The data showed that UC-MSCs did not represented significant changes in viability and biological characterizations after received HS pretreatment. Administration of HS-pretreated UC-MSCs into the ALI model, improved pathological changes and lung damage-related indexes, reduced of the levels of pro-inflammatory cytokines and modulated the balance of M1/M2. Mechanistically, both in vivo and in vitro studies demonstrated that HS pretreatment enhanced the protein level of HSP70 in UC-MSCs and subsequently upregulated the synthesis and secretion of PGE2, which negatively modulated the NLRP3 inflammasome activation of alveolar macrophages. And these effects was partially reversed by Apoptozole. Conclusion: HS pretreatment can strengthen the beneficial effects of UC-MSCs on inhibiting NLRP3 inflammasome activation of macrophages in ALI. The mechanism may be contributed to the upregulated expression of HSP70 to further induce PGE2 synthesis and secretion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haijin Lv ◽  
Xiaofeng Yuan ◽  
Jiebin Zhang ◽  
Tongyu Lu ◽  
Jia Yao ◽  
...  

Abstract Objectives Acute lung injury (ALI) remains a common cause of morbidity and mortality worldwide, and to date, there is no effective treatment for ALI. Previous studies have revealed that topical administration of mesenchymal stem cells (MSCs) can attenuate the pathological changes in experimental acute lung injury. Heat shock (HS) pretreatment has been identified as a method to enhance the survival and function of cells. The present study aimed to assess whether HS-pretreated MSCs could enhance immunomodulation and recovery from ALI. Materials and methods HS pretreatment was performed at 42 °C for 1 h, and changes in biological characteristics and secretion functions were detected. In an in vivo mouse model of ALI, we intranasally administered pretreated umbilical cord-derived MSCs (UC-MSCs), confirmed their therapeutic effects, and detected the phenotypes of the macrophages in bronchoalveolar lavage fluid (BALF). To elucidate the underlying mechanisms, we cocultured pretreated UC-MSCs with macrophages in vitro, and the expression levels of inflammasome-related proteins in the macrophages were assessed. Results The data showed that UC-MSCs did not exhibit significant changes in viability or biological characteristics after HS pretreatment. The administration of HS-pretreated UC-MSCs to the ALI model improved the pathological changes and lung damage-related indexes, reduced the proinflammatory cytokine levels, and modulated the M1/M2 macrophage balance. Mechanistically, both the in vivo and in vitro studies demonstrated that HS pretreatment enhanced the protein level of HSP70 in UC-MSCs, which negatively modulated NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in alveolar macrophages. These effects were partially reversed by knocking down HSP70 expression. Conclusion HS pretreatment can enhance the beneficial effects of UC-MSCs in inhibiting NLRP3 inflammasome activation in macrophages during ALI. The mechanism may be related to the upregulated expression of HSP70. Graphical abstract


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6238
Author(s):  
Paromita Sarbadhikary ◽  
Blassan P. George ◽  
Heidi Abrahamse

The pyrin domain-containing multiprotein complex NLRP3 inflammasome, consisting of the NLRP3 protein, ASC adaptor, and procaspase-1, plays a vital role in the pathophysiology of several inflammatory disorders, including neurological and metabolic disorders, chronic inflammatory diseases, and cancer. Several phytochemicals act as promising anti-inflammatory agents and are usually regarded to have potential applications as complementary or alternative therapeutic agents against chronic inflammatory disorders. Various in vitro and in vivo studies have reported the anti-inflammatory role of berberine (BRB), an organic heteropentacyclic phytochemical and natural isoquinoline, in inhibiting NLRP3 inflammasome-dependent inflammation against many disorders. This review summarizes the mechanism and regulation of NLRP3 inflammasome activation and its involvement in inflammatory diseases, and discusses the current scientific evidence on the repressive role of BRB on NLRP3 inflammasome pathways along with the possible mechanism(s) and their potential in counteracting various inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document