scholarly journals Experimental And Numerical Study On Surface Generated Mechanism of Robotic Belt Grinding Process Considering The Dynamic Deformation of Elastic Contact Wheel

Author(s):  
Mingjun Liu ◽  
Yadong Gong ◽  
Jingyu Sun ◽  
Yuxin Zhao ◽  
Yao Sun

Abstract In the robotic belt grinding process, the elastic contact condition between the flexible tool and the workpiece is a critical issue which extremely influences the surface quality of the manufactured part. The existing analysis of elastic removal mechanism is based on the statistic contact condition but ignoring the dynamic removal phenomenon. In this paper, we discussed the dynamic contact pressure distribution caused by the non-unique removal depth in the grinding process. Based on the analysis of the equivalent removal depth of a single grit and the trajectories of grits in manufacturing procedure, an elastic grinding surface topography model was established with the consideration of the dynamic contact condition in the removing process. Robotic belt grinding experiments were accomplished to validate the precision of this model, while the result showed that the surface roughness prediction error could be confined to 11.6%, which meant this model provided higher accuracy than the traditional predicting methods.

2014 ◽  
Vol 18 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Shuihua Wu ◽  
Kazem Kazerounian ◽  
Zhongxue Gan ◽  
Yunquan Sun

2010 ◽  
Vol 49 (30) ◽  
pp. 5891 ◽  
Author(s):  
Johannes Böhm ◽  
Andras Vernes ◽  
Georg Vorlaufer ◽  
Michael Vellekoop

2019 ◽  
Vol 894 ◽  
pp. 104-111
Author(s):  
Thanh Long Le ◽  
Jyh Chen Chen ◽  
Huy Bich Nguyen

In this study, the numerical computation is used to investigate the transient movement of a water droplet in a microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. 40mW heat source is placed at the distance of 1 mm from the initial position of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Tie Zhang ◽  
Xiaohong Liang ◽  
Ye Yu ◽  
Bin Zhang

The angular variation of the joints may be large, and collision between workpieces and tools may occur in robotic grinding. Therefore, this paper proposes an optimal robotic grinding path search algorithm based on the recursive method. The algorithm is optimized by changing the position of the tool coordinate system on the belt wheel; thus, the pose of the robot during grinding is adjusted. First, the position adjustment formula of the tool coordinate system is proposed, and a coordinate plane is established to describe the grinding path of the robot based on the position adjustment formula. Second, the ordinate value of this coordinate plane is dispersed to obtain the search field of the optimal robotic grinding path search algorithm. Third, an optimal robotic grinding path search algorithm is proposed based on the recursive method and single-step search process. Finally, the algorithm is implemented on the V-REP platform. Robotic grinding paths for V-shaped workpieces and S-shaped workpieces are generated using this algorithm, and a grinding experiment is performed. The experimental results show that the robotic grinding paths generated by this algorithm can smoothly complete grinding operations and feature a smaller angular variation of the joint than other methods and no collision.


Sign in / Sign up

Export Citation Format

Share Document