scholarly journals Geometric Property of Off Resonance Error Robust Composite Pulse

Author(s):  
Shingo Kukita ◽  
Haruki Kiya ◽  
Yasushi Kondo

Abstract The precision of quantum operations is affected by unavoidable systematic errors. A composite pulse (CP), which has been well investigated in nuclear magnetic resonance (NMR), is a technique that suppresses the influence of systematic errors by replacing a single operation with a sequence of operations. In NMR, there are two typical systematic errors, Pulse Length Error (PLE) and Off Resonance Error (ORE). Recently, it was found that PLE robust CPs have a clear geometric property. In this study, we show that ORE robust CPs also have a simple geometric property, which is associated with trajectories on the Bloch sphere of the corresponding operations. We discuss the geometric property of ORE robust CPs using two examples.

Author(s):  
Jan C. Teipel ◽  
Thomas Hausler ◽  
Katharina Sommerfeld ◽  
Andreas Scharinger ◽  
Stephan G. Walch ◽  
...  

Due to legal regulations, the rise of globalised (online) commerce and the need for public health protection, the analysis of spirits (alcoholic beverages > 15 % vol) is a task with growing importance for governmental and commercial laboratories. In this article a newly developed method using nuclear magnetic resonance (NMR) spectroscopy for the simultaneous determination of 15 substances relevant for the quality and authenticity assessment of spirits is described. The new method starts with a simple and rapid sample preparation and does not need an internal standard. For each sample a group of 1H-NMR spectra is recorded, among them a 2D spectrum for analyte identification and 1D spectra with suppression of solvent signals for quantification. Using the Pulse Length Based Concentration Determination (PULCON) method, concentrations are calculated from curve fits of the characteristic signals for each analyte. The optimisation of the spectra, their evaluation and the transfer of the results are done fully automatically. Glucose, fructose, sucrose, acetic acid, citric acid, formic acid, ethyl acetate, ethyl lactate, acetaldehyde, ethanol, methanol, n-propanol, isobutanol, isopentanol, 2-phenylethanol and 5-(hydroxymethyl)furfural (HMF) can be quantified with an overall accuracy better than 8 %. This new NMR-based targeted quantification method enables the simultaneous and efficient quantification of relevant spirits ingredients in their typical concentration ranges in one process with good accuracy. It has proven to be a reliable method for all kinds of spirits in routine food control.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1355
Author(s):  
Jan C. Teipel ◽  
Thomas Hausler ◽  
Katharina Sommerfeld ◽  
Andreas Scharinger ◽  
Stephan G. Walch ◽  
...  

Due to legal regulations, the rise of globalised (online) commerce and the need for public health protection, the analysis of spirit drinks (alcoholic beverages >15% vol) is a task with growing importance for governmental and commercial laboratories. In this article a newly developed method using nuclear magnetic resonance (NMR) spectroscopy for the simultaneous determination of 15 substances relevant to assessing the quality and authenticity of spirit drinks is described. The new method starts with a simple and rapid sample preparation and does not need an internal standard. For each sample, a group of 1H-NMR spectra is recorded, among them a two-dimensional spectrum for analyte identification and one-dimensional spectra with suppression of solvent signals for quantification. Using the Pulse Length Based Concentration Determination (PULCON) method, concentrations are calculated from curve fits of the characteristic signals for each analyte. The optimisation of the spectra, their evaluation and the transfer of the results are done fully automatically. Glucose, fructose, sucrose, acetic acid, citric acid, formic acid, ethyl acetate, ethyl lactate, acetaldehyde, methanol, n-propanol, isobutanol, isopentanol, 2-phenylethanol and 5-(hydroxymethyl)furfural (HMF) can be quantified with an overall accuracy better than 8%. This new NMR-based targeted quantification method enables the simultaneous and efficient quantification of relevant spirit drinks ingredients in their typical concentration ranges in one process with good accuracy. It has proven to be a reliable method for all kinds of spirit drinks in routine food control.


2021 ◽  
Vol 2 (1) ◽  
pp. 475-487
Author(s):  
Kenneth A. Marincin ◽  
Indrani Pal ◽  
Dominique P. Frueh

Abstract. Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated with mitigated sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.


2021 ◽  
Author(s):  
Kenneth A. Marincin ◽  
Indrani Pal ◽  
Dominique P. Frueh

Abstract. Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated without sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
Paul C. Lauterbur

Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.


Sign in / Sign up

Export Citation Format

Share Document