scholarly journals Distinct evolution of infection-enhancing and neutralizing epitopes in the spike protein of SARS-CoV-2 variants (alpha, beta, gamma, delta, lambda and mu) : a structural and molecular epidemiology study

Author(s):  
Patrick GUERIN ◽  
Nouara YAHI ◽  
Fodil AZZAZ ◽  
Henri CHAHINIAN ◽  
Jean-Marc SABATIER ◽  
...  

Abstract Objectives. The efficiency of Covid-19 vaccination is determined by cellular and humoral immune responses, and for the latter, by the balance between neutralizing and infection-enhancing antibodies. Here we analyzed the evolution of neutralizing and facilitating epitopes in the spike protein among SARS-CoV-2 variants. Methods. Amino acid alignments were performed on 929,203 spike sequences over the 4 last months. Molecular modeling studies of the N-terminal domain (NTD) and rod-like regions of the spike protein were performed on a representative panel of SARS-CoV-2 variants that were structurally compared with the original Wuhan strain. Results. D614, which belongs to an antibody-dependent-enhancement (ADE) epitope common to SARS-CoV-1 and SARS-CoV-2, has rapidly mutated to D614G in the first months of 2020, explaining why ADE has not been detected following mass vaccination. We show that this epitope is conformationally linked to the main ADE epitope of the SARS-CoV-2 NTD which is highly conserved among most variants. In contrast, the neutralizing epitope of the NTD showed extensive variations in SARS-CoV-2 variants. Conclusions. This molecular epidemiology study coupled with structural analysis of the spike protein indicates that the balance between facilitating and neutralizing antibodies in vaccinated people is in favor of neutralization for the Wuhan strain,alpha and beta variants, but not for gamma, delta, lambda and mu. The evolution of SARS-CoV-2 has dramatically affected the ADE/neutralization balance which is nowadays in favor of ADE. Future vaccines should consider these data to design new formulations adapted to SARS-CoV-2 variants and lacking ADE epitopes in the spike protein.

Author(s):  
Patrick Guérin ◽  
Nouara Yahi ◽  
Fodil Azzaz ◽  
Henri Chahinian ◽  
Jean-Marc Sabatier ◽  
...  

Objectives. The efficiency of Covid-19 vaccination is determined by cellular and humoral immune responses, and for the latter, by the balance between neutralizing and infection-enhancing antibodies. Here we analyzed the evolution of neutralizing and facilitating epitopes in the spike protein among SARS-CoV-2 variants. Methods. Amino acid alignments were performed on 929,203 spike sequences over the 4 last months. Molecular modeling studies of the N-terminal domain (NTD) and rod-like regions of the spike protein were performed on a representative panel of SARS-CoV-2 variants that were structurally compared with the original Wuhan strain. Results. D614, which belongs to an antibody-dependent-enhancement (ADE) epitope common to SARS-CoV-1 and SARS-CoV-2, has rapidly mutated to D614G in the first months of 2020, explaining why ADE has not been detected following mass vaccination. We show that this epitope is conformationally linked to the main ADE epitope of the SARS-CoV-2 NTD which is highly conserved among most variants. In contrast, the neutralizing epitope of the NTD showed extensive variations in SARS-CoV-2 variants. Conclusions. This molecular epidemiology study coupled with structural analysis of the spike protein indicates that the balance between facilitating and neutralizing antibodies in vaccinated people is in favor of neutralization for the Wuhan strain, alpha and beta variants, but not for gamma, delta, lambda and mu. The evolution of SARS-CoV-2 has dramatically affected the ADE/neutralization balance which is nowadays in favor of ADE. Future vaccines should consider these data to design new formulations adapted to SARS-CoV-2 variants and lacking ADE epitopes in the spike protein.


2021 ◽  
Author(s):  
Patrick GUERIN ◽  
Nouara YAHI ◽  
Fodil AZZAZ ◽  
Henri CHAHINIAN ◽  
Jean-Marc SABATIER ◽  
...  

Abstract Infection-enhancing antibodies may limit the efficiency of Covid-19 vaccines. We analyzed the evolution ofneutralizing and facilitating epitopes in 1,860,489 SARS-CoV-2 genomes stored in the Los Alamos databasefrom June to November 2021. The structural dynamics of these epitopes was determined by molecular modelingof the spike protein on a representative panel of SARS-CoV-2 variants. D614, which belongs to an antibody-dependent-enhancement (ADE) epitope common to SARS-CoV-1 and SARS-CoV-2, has mutated to D614G in2020, which could explain why ADE has not been detected following mass vaccination. A second epitopelocated in the N-terminal domain (NTD), specific of SARS-CoV-2, is highly conserved among most variants. Incontrast, the neutralizing epitope of the NTD showed extensive variations in SARS-CoV-2 variants. The balancebetween facilitating and neutralizing antibodies is in favor of neutralization for the Wuhan strain, alpha and betavariants, but not for gamma, delta, lambda, and mu. The recently emerging omicron variant is atypic as itsmutational profiles affects both neutralization and ADE epitopes. Overall, our data reveal that the evolution ofSARS-CoV-2 has dramatically affected the ADE/neutralization balance. Future vaccines should consider thesefindings to design new formulations adapted to SARS-CoV-2 variants and lacking ADE epitopes in the spikeprotein.


2021 ◽  
Author(s):  
Beatriz Sánchez-Sendra ◽  
Eliseo Albert ◽  
Joao Zulaica ◽  
Ignacio Torres ◽  
Estela Giménez ◽  
...  

ABSTRACTImmunosenescence may impact the functionality and breadth of vaccine-elicited humoral immune responses. The ability of sera to neutralize the SARS-CoV-2 spike protein (S) from Beta, Gamma, Delta, and Epsilon variants of concern (VOCs) relative to the ancestral Wuhan-Hu-1 strain was compared in Comirnaty® COVID-19-vaccinated elderly nursing home residents (n=30) or younger individuals (n=18) and non-vaccinated individuals who recovered from severe COVID-19 (n=19). In all groups, some participants lacked NtAb against one or more VOCs, mainly the Beta variant (15-20%). Serum NtAb titers were lowest against the Beta variant followed by Gamma, Epsilon, and Delta variants. Fold change reduction in NtAb titers relative to the ancestral strain was greatest for the Beta variant (6.7-18.8) followed by Gamma (3.6-6.2), Epsilon (2.9-5.8), and Delta (3.5-4.3) variants, regardless of the study group considered. In summary, older age, frailty, and concurrence of co-morbidities had no impact on the serum NtAb activity profile against SARS-CoV-2 VOCs.


2005 ◽  
Vol 112 (1-2) ◽  
pp. 24-31 ◽  
Author(s):  
Ran-Yi Liu ◽  
Li-Zhi Wu ◽  
Bi-Jun Huang ◽  
Jia-Ling Huang ◽  
Yan-Ling Zhang ◽  
...  

2021 ◽  
Author(s):  
Preethi Eldi ◽  
Tamara H Cooper ◽  
Natalie A Prow ◽  
Liang Liu ◽  
Gary K Heinemann ◽  
...  

The ongoing COVID-19 pandemic perpetuated by SARS-CoV-2 variants, has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust Th1-biased, spike-specific neutralizing antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated neutralizing antibody activity was maintained up to 9 months post-vaccination in both young and aging mice, with durable immune memory evident even in the presence of pre-existing vector immunity. This immunogenicity profile suggests a potential to expand protection generated by current vaccines in a heterologous boost format, and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


2021 ◽  
Author(s):  
Paulina Kaplonek ◽  
Deniz Cizmeci ◽  
Stephanie Fischinger ◽  
Ai-ris Collier ◽  
Todd Suscovich ◽  
...  

The successful development of several COVID-19 vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants, able to evade vaccine induced neutralizing antibodies, real world vaccine efficacy has begun to show differences across the mRNA platforms, suggesting that subtle variation in immune responses induced by the BNT162b2 and mRNA1273 vaccines may provide differential protection. Given our emerging appreciation for the importance of additional antibody functions, beyond neutralization, here we profiled the post-boost binding and functional capacity of the humoral response induced by the BNT162b2 and mRNA-1273 in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to WT SARS-CoV-2 and VOCs. However, differences emerged across epitope-specific responses, with higher RBD- and NTD- specific IgA, as well as functional antibodies (ADNP and ADNK) in mRNA-1273 vaccine recipients. Additionally, RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector function induced across the mRNA vaccines, providing novel insights into potential differences in protective immunity generated across these vaccines in the setting of newly emerging VOCs.


Author(s):  
María Martín-Vicente ◽  
Juan Berenguer ◽  
María José Muñoz-Gómez ◽  
Cristina Díez ◽  
Rafael Micán ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 34
Author(s):  
Zhizhong Mi ◽  
Ling Zhao ◽  
Ming Sun ◽  
Ting Gao ◽  
Yong Wang ◽  
...  

Rabies is a zoonotic infectious disease caused by rabies virus (RABV), and its mortality rate is as high as 100%. Globally, an average of 60,000 people die from rabies each year. The most effective method to prevent and limit rabies is vaccination, but it is currently expensive and inefficient, consisting of a 3-dose series of injections and requiring to be immunized annually. Therefore, it is urgent to develop a single dose of long-acting rabies vaccine. In this study, recombinant rabies virus (rRABV) overexpressing interleukin-33 (IL-33) was constructed and designated as rLBNSE-IL33, and its effect was evaluated in a mouse model. The results showed that rLBNSE-IL33 could enhance the quick production of RABV-induced immune antibodies as early as three days post immunization (dpi) through the activation of dendritic cells (DCs), a component of the innate immune system. Furthermore, rLBNSE-IL33 induced high-level virus-neutralizing antibodies (VNA) production that persisted for 8 weeks by regulating the T cell-dependent germinal center (GC) reaction, thus resulting in better protection against rabies. Our data suggest the IL-33 is a novel adjuvant that could be used to enhance innate and humoral immune responses by activating the DC-GC reaction, and thus, rLBNSE-IL33 could be developed as a safe and effective vaccine for animals.


2017 ◽  
Vol 91 (7) ◽  
Author(s):  
Yingying Li ◽  
Ming Zhou ◽  
Zhaochen Luo ◽  
Yachun Zhang ◽  
Min Cui ◽  
...  

ABSTRACT Rabies continues to present a public health threat in most countries of the world. The most efficient way to prevent and control rabies is to implement vaccination programs for domestic animals. However, traditional inactivated vaccines used in animals are costly and have relatively low efficiency, which impedes their extensive use in developing countries. There is, therefore, an urgent need to develop single-dose and long-lasting rabies vaccines. However, little information is available regarding the mechanisms underlying immunological memory, which can broaden humoral responses following rabies vaccination. In this study, a recombinant rabies virus (RABV) that expressed murine interleukin-7 (IL-7), referred to here as rLBNSE-IL-7, was constructed, and its effectiveness was evaluated in a mouse model. rLBNSE-IL-7 induced higher rates of T follicular helper (Tfh) cells and germinal center (GC) B cells from draining lymph nodes (LNs) than the parent virus rLBNSE. Interestingly, rLBNSE-IL-7 improved the percentages of long-lived memory B cells (Bmem) in the draining LNs and plasma cells (PCs) in the bone marrow (BM) for up to 360 days postimmunization (dpi). As a result of the presence of the long-lived PCs, it also generated prolonged virus-neutralizing antibodies (VNAs), resulting in better protection against a lethal challenge than that seen with rLBNSE. Moreover, consistent with the increased numbers of Bmem and PCs after a boost with rLBNSE, rLBNSE-IL-7-immunized mice promptly produced a more potent secondary anti-RABV neutralizing antibody response than rLBNSE-immunized mice. Overall, our data suggest that overexpressing IL-7 improved the induction of long-lasting primary and secondary antibody responses post-RABV immunization. IMPORTANCE Extending humoral immune responses using adjuvants is an important method to develop long-lasting and efficient vaccines against rabies. However, little information is currently available regarding prolonged immunological memory post-RABV vaccination. In this study, a novel rabies vaccine that expressed murine IL-7 was developed. This vaccine enhanced the numbers of Tfh cells and the GC responses, resulting in upregulated quantities of Bmem and PCs. Moreover, we found that the long-lived PCs that were elicited by the IL-7-expressing recombinant virus (rLBNSE-IL-7) were able to sustain VNA levels much longer than those elicited by the parent rLBNSE virus. Upon reexposure to the pathogen, the longevous Bmem, which maintained higher numbers for up to 360 dpi with rLBNSE-IL-7 compared to rLBNSE, could differentiate into antibody-secreting cells, resulting in rapid and potent secondary production of VNAs. These results suggest that the expression of IL-7 is beneficial for induction of potent and long-lasting humoral immune responses.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1118 ◽  
Author(s):  
Chen Chen ◽  
Chengguang Zhang ◽  
Ruiming Li ◽  
Zongmei Wang ◽  
Yueming Yuan ◽  
...  

Rabies, as one of the most threatening zoonoses in the world, causes a fatal central nervous system (CNS) disease. So far, vaccination with rabies vaccines has been the most effective measure to prevent and control this disease. At present, inactivated rabies vaccines are widely used in humans and domestic animals. However, humoral immune responses induced by inactivated rabies vaccines are relatively low and multiple shots are required to achieve protective immunity. Supplementation with an adjuvant is a practical way to improve the immunogenicity of inactivated rabies vaccines. In this study, we found that monophosphoryl-lipid A (MPLA), a well-known TLR4 agonist, could significantly promote the maturation of bone marrow-derived dendritic cells (BMDC) through a TLR4-dependent pathway in vitro and the maturation of conventional DCs (cDCs) in vivo. We also found that MPLA, serving as an adjuvant for inactivated rabies vaccines, could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, and plasma cells (PCs), consequently enhancing the production of RABV-specific total-IgG, IgG2a, IgG2b, and the virus-neutralizing antibodies (VNAs). Furthermore, MPLA could increase the survival ratio of mice challenged with virulent RABV. In conclusion, our results demonstrate that MPLA serving as an adjuvant enhances the intensity of humoral immune responses by activating the cDC–Tfh–GC B axis. Our findings will contribute to the improvement of the efficiency of traditional rabies vaccines.


Sign in / Sign up

Export Citation Format

Share Document