scholarly journals Streptomyces Pimoensis sp. nov., Isolated From the Taklimakan Desert in Xinjiang, China

Author(s):  
Ping Zhang ◽  
Xiaoxia Luo ◽  
Xinrong Luo ◽  
Zhanwen Liu ◽  
Zhanfeng Xia ◽  
...  

Abstract A novel Streptomyces strain, designated TRM 75549T, was separated from a sample of sand in Pimo, Taklimakan desert, Xinjiang, North-West China. Phylogenetic analyses of the 16S rRNA gene sequences placed strain TRM75549T within the genus Streptomyces with the highest similarities to Streptomyces flavoviridis NBRC 12772T (98.76%). The whole-genome average nucleotide identity (ANI) value between strain TRM75549T and S. flavoviridis NBRC 12772T is 88.20%. Digital DNA-DNA hybridization (dDDH) value between strain TRM75549T and S. flavoviridis NBRC 12772T is 44.10%. They are well below the recommended 95-96% and 70% cut-off points for designated species respectively. A multi-locus sequence analysis of five house-keeping genes (atpD, gyrB, recA, rpoB and trpB) and phylogenomic analysis also illustrated that strain TRM75549T should be assigned to the genus Streptomyces. Strain TRM75549T contained MK-9 (H6) and MK-9 (H8) as predominant menaquinones. The diagnostic diamino acid of cell walls was identified as LL-diaminopimelic acid and Meso-diaminopimelic. The whole-cell sugar pattern of strain TRM 75549T consisted of mannose and glucose. The major fatty acids (>5%) were iso-C14:0, iso-C15:0, anteiso-C15:0, iso-C16:1H, iso-C16:0. The polar lipids were diphosphatidylglycerol, lysophosphatidylglycerol, phosphatidylethanolamine, phospholipids, phosphatidylglycerol, phosphatidylinositol, phosphatiylinositol mannosides and unidentified phospholipids. Strain TRM75549T could be differentiated from S. flavoviridis NBRC 12772T, based on physiological and biochemical characteristics. Based on the data from this polyphasic study presented above, strain TRM75549T is represent ative of a novel species of the genus Streptomyces, for which the name Streptomyces pimoensis sp. nov. is proposed. The type strain is TRM75549T (=CCTCC AA 2020054T=LMG 32221T ).

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1945-1951 ◽  
Author(s):  
Yong-Guang Zhang ◽  
Qing Liu ◽  
Hong-Fei Wang ◽  
Dao-Feng Zhang ◽  
Yuan-Ming Zhang ◽  
...  

A facultatively alkaliphilic actinomycete strain, designated EGI 80088T, was isolated from a saline-alkali soil sample from Xinjiang province, north-west China, and subjected to a polyphasic taxonomic characterization. Strain EGI 80088T formed fragmented aerial hyphae and short spore chains, and rod-like spores aggregated at maturity. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and glucosamine, mannose, galactose, glucose and rhamnose as the marker sugars. The major fatty acids identified (>5 %) were anteiso-C15 : 0, iso-C15 : 0, summed feature 4 (iso-C17 : 1I/anteiso-C17 : 1B), iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinone was MK-9(H4). The G+C content of the genomic DNA of strain EGI 80088T was 70.6 mol%. EGI 80088T showed the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Haloactinopolyspora alba YIM 93246T (98.5 %). The DNA–DNA relatedness value of the strain EGI 80088T and H. alba YIM 93246T was 59.3±5.2 %. On the basis of morphological, chemotaxonomic and phylogenetic characteristics and DNA–DNA hybridization data, strain EGI 80088T represents a novel species of the genus Haloactinopolyspora , for which the name Haloactinopolyspora alkaliphila sp. nov. (type strain EGI 80088T = BCRC 16946T = JCM 19128T) is proposed. The description of the genus Haloactinopolyspora has also been emended.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2078-2084 ◽  
Author(s):  
Bo Liu ◽  
Guo-Hong Liu ◽  
Cetin Sengonca ◽  
Peter Schumann ◽  
Ming-Kuang Wang ◽  
...  

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterium (FJAT-14571T) was isolated from a soil sample in Taiwan. Strain FJAT-14571T grew at 20–40 °C (optimum 35 °C), pH 6–10 (optimum pH 8) and 0–2 % (w/v) NaCl (optimum 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain FJAT-14571T was a member of the genus Bacillus and was most closely related to Bacillus oceanisediminis DSM 24771T (96.2 %). DNA–DNA relatedness between strain FJAT-14571T and B. oceanisediminis DSM 24771T was low (32.0 % ± 0.88 %). The diagnostic diamino acid of the peptidoglycan of strain FJAT-14571T was meso-diaminopimelic acid and the predominant menaquinone was MK-7 (96.6 %). The major cellular fatty acids were iso-C15 : 0 (46.4 %), anteiso-C15 : 0 (7.6 %), iso-C17 : 0 (8.2 %) and iso-C16 : 0 (10.0 %) and the DNA G+C content was 40.8 mol%. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that strain FJAT-14571T represents a novel species within the genus Bacillus, for which the name Bacillus taiwanensis sp. nov. is proposed. The type strain is FJAT-14571T ( = DSM 27845T = CGMCC1.1 2698T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2420-2423 ◽  
Author(s):  
P. Kämpfer ◽  
J. Schäfer ◽  
N. Lodders ◽  
K. Martin

A Gram-positive, coccoid, non-endospore-forming actinobacterium (strain 12-Be-011T) was isolated from indoor wall material. Based on 16S rRNA gene sequence comparisons, strain 12-Be-011T was clearly shown to belong to the genus Microlunatus and was most closely related to Microlunatus panaciterrae Gsoil 954T (95.7 %), Microlunatus soli CC-12602T (94.9 %), Microlunatus ginsengisoli Gsoil 633T (94.8 %), Microlunatus aurantiacus YIM 45721T (95.5 %) and Microlunatus phosphovorus DSM 10555T (94.7 %). The cell-wall peptidoglycan contained ll-diaminopimelic acid as the diagnostic diamino acid. Mycolic acids were absent. The major menaquinone was MK-9(H4). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown phospholipids and one unknown glycolipid. The major fatty acids of iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 supported the affiliation of strain 12-Be-011T to the genus Microlunatus. Physiological and biochemical test results allowed a clear phenotypic differentiation of strain 12-Be-011T from all other species of the genus Microlunatus. Hence, strain 12-Be-011T can be regarded as a representative of a novel species, for which the name Microlunatus parietis sp. nov. is proposed, with the type strain 12-Be-011T (=DSM 22083T=CCM 7636T).


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2811-2815 ◽  
Author(s):  
Honghui Zhu ◽  
Shumei Jiang ◽  
Qing Yao ◽  
Yonghong Wang ◽  
Meibiao Chen ◽  
...  

An actinomycete, designated strain GIMN4.003T, was isolated from seawater collected in Sanya, China. It produced white aerial mycelium and yellow substrate mycelium on Gause’s synthetic agar medium no. 1. The substrate mycelium colour was not sensitive to pH. Scanning electron microscopy observations revealed that GIMN4.003T produced straight to flexuous spore chains of rough to warty spores. ll-Diaminopimelic acid was present in the cell-wall hydrolysate. Based on chemotaxonomy and morphological features, strain GIMN4.003T was identified as a member of the genus Streptomyces. Melanin was not produced. No antimicrobial activity was detected against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Penicillium citrinum or Candida albicans. Analysis of the 16S rRNA gene sequence revealed that the highest sequence similarity was to Streptomyces radiopugnans R97T (99.0 %). However, DNA relatedness between GIMN4.003T and S. radiopugnans DSM 41901T was low (41.24±1.47 %). Furthermore, the morphological, physiological and biochemical characteristics of strain GIMN4.003T were different from those of S. radiopugnans DSM 41901T and the type strains of other closely related Streptomyces species. On the basis of its physiological and molecular properties, it is evident that strain GIMN4.003T ( = CCTCCM 208215T  = NRRL B-24801T) represents the type strain of a novel species within the genus Streptomyces, for which the name Streptomyces fenghuangensis sp. nov. is proposed.


2007 ◽  
Vol 57 (5) ◽  
pp. 1035-1040 ◽  
Author(s):  
André Antunes ◽  
Luis França ◽  
Fred A. Rainey ◽  
Robert Huber ◽  
M. Fernanda Nobre ◽  
...  

Two moderately halophilic Gram-negative bacteria were isolated from a sample taken from the brine–seawater interface of the Shaban Deep in the Red Sea. Phylogenetic analysis of the 16S rRNA gene sequence showed that these organisms represent a novel species of the genus Marinobacter. Cells of the new isolates formed non-pigmented colonies and were motile by means of a single polar flagellum. Strains SD-14BT and SD-14C grew optimally at 35–37 °C, in 5 % NaCl and at pH 7.5–8.0. The organisms were aerobic, but reduced nitrate to nitrogen under anaerobic conditions. Acid was produced from only a few carbohydrates. Ubiquinone 9 was the major respiratory quinone. The major fatty acids of strains SD-14BT and SD-14C were C16 : 0, C18 : 1 ω9c, summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c) and C12 : 0 3-OH. The DNA G+C contents were 55.9 and 55.7 mol%, respectively. On the basis of the phylogenetic analyses and physiological and biochemical characteristics, it is proposed that strains SD-14BT and SD-14C represent a novel species of the genus Marinobacter, with the name Marinobacter salsuginis sp. nov. The type strain is strain SD-14BT (=DSM 18347T=LMG 23697T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2284-2287 ◽  
Author(s):  
Saowapar Khianngam ◽  
Somboon Tanasupawat ◽  
Ancharida Akaracharanya ◽  
Kwang Kyu Kim ◽  
Keun Chul Lee ◽  
...  

A xylanolytic bacterium, strain S1-3T, was isolated from soil collected in Nan province, Thailand. It was characterized taxonomically based on phenotypic characteristics and 16S rRNA gene sequence comparison. The strain was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. It contained meso-diaminopimelic acid in the cell-wall peptidoglycan. The major menaquinone was MK-7. Iso-C16 : 0 (39.5 %) and anteiso-C15 : 0 (26.8 %) were predominant cellular fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and lysyl-phosphatidylglycerol were the major polar lipids. The DNA G+C content was 53.3 mol%. Phylogenetic analysis using 16S rRNA gene sequences showed that strain S1-3T was affiliated to the genus Cohnella, and was closely related to Cohnella ginsengisoli GR21-5T and Cohnella thermotolerans CCUG 47242T with 95.7 and 95.3 % sequence similarity, respectively. Strain S1-3T could be clearly distinguished from related species of the genus Cohnella by its physiological and biochemical characteristics as well as by its phylogenetic position. Therefore, the strain represents a novel species of the genus Cohnella, for which the name Cohnella thailandensis sp. nov. is proposed. The type strain is S1-3T (=KCTC 22296T =TISTR 1890T =PCU 306T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2030-2035 ◽  
Author(s):  
Bo Liu ◽  
Guo-Hong Liu ◽  
Cetin Sengonca ◽  
Peter Schumann ◽  
Jian-Mei Che ◽  
...  

A Gram-staining-positive, rod-shaped, endospore-forming, aerobic bacterium (FJAT-17212T) was isolated from the rhizosphere soil of a medical plant, Prunella vulgaris (common selfheal), on the Wuyishan mountain of China. Isolate FJAT-17212T grew at 10–50 °C (optimum 30 °C), pH 5–11 (optimum pH 7) and with 0–6  % (w/v) NaCl (optimum 2  %). Phylogenetic analyses based on 16S rRNA gene sequences showed that isolate FJAT-17212T was a member of the genus Bacillus and was most closely related to Bacillus galactosidilyticus DSM 15595T (97.3  %). DNA–DNA relatedness between isolate FJAT-17212T and B. galactosidilyticus DSM 15595T was low (35.2  % ± 2.3). The diagnostic diamino acid of the peptidoglycan of isolate FJAT-17212T was meso-diaminopimelic acid and the predominant isoprenoid quinone was MK-7 (80.8  %). The major cellular fatty acids were iso-C15 : 0 (35.7  %), anteiso-C15 : 0 (29.8  %), iso-C14 : 0 (9.9  %) and iso-C16 : 0 (9.9  %) and the DNA G+C content was 39.8  mol%. Phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate FJAT-17212T represents a novel species within the genus Bacillus, for which the name Bacillus wuyishanensis sp. nov. is proposed. The type strain is FJAT-17212T ( = DSM 27848T = CGMCC 1.12709T).


Author(s):  
Qi-hui Zhu ◽  
Cai-ling Yang ◽  
Xiao-xia Luo ◽  
Li-li Zhang ◽  
Zhan-feng Xia

A bacterial strain, designated TRM 80801T, was isolated from the Karelinea in Taklamakan desert, Xinjiang Uygur Autonomous Region, north-west China. Cells were Gram-stain-positive, aerobic, non-motile, short rods. Strain TRM 80801T grew at 4–50 °C, with optimum growth at 28 °C, and grew at pH 6.0–11.0 and 1–15 % (w/v) NaCl. Phylogenetic analyses of the 16S rRNA gene sequences placed strain TRM 80801T within the genus Microbacterium with the highest similarities to Microbacterium suaedae YZYP 306T (98.97 %) and Microbacterium indicum BBH6T (98.17 %), respectively. The DNA G+C content of TRM 80801T is 69.38 mol%. The cell-wall peptidoglycan contained the amino acids ornithine, glutamic acid, glycine and alanine, the diagnostic diamino acid was ornithine. The acyl type of the peptidoglycan was glycolyl. Whole-cell sugars were ribose, mannose, glucose, rhamnose and galactose. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The predominant menaquinones were MK-10, MK-11 and MK-12. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol. The whole-genome average nucleotide identity (ANI) value between strain TRM 80801T and Microbacterium suaedae YZYP 306T is 70.2 %. On the basis of the evidence presented in this study, strain TRM 80801T is representative of a novel species in the genus Microbacterium , for which the name Microbacterium karelineae sp. nov. is proposed. The type strain is TRM 80801T (=CCTCC AB 2019248T=KCTC 49357T).


2011 ◽  
Vol 61 (4) ◽  
pp. 747-756 ◽  
Author(s):  
Ismet Ara ◽  
Baljinova Tsetseg ◽  
Damdinsuren Daram ◽  
Manabu Suto ◽  
Katsuhiko Ando

Two actinomycetes, designated MN08-A0270T and MN08-A0297T, were isolated from soil from the area around Khuvsgul Lake, Khuvsgul province, Mongolia, and subjected to phenotypic and genotypic characterization. They produced well-developed, branched substrate hyphae and, similar to closely related species of the genus Pseudonocardia, produced zigzag-shaped aerial hyphae by acropetal budding and blastospores. A comparative analysis of 16S rRNA gene sequences indicated that strains MN08-A0270T and MN08-A0297T formed two distinct clades within the genus Pseudonocardia and were respectively most closely related to Pseudonocardia yunnanensis NBRC 15681T (97.3 % similarity) and Pseudonocardia thermophila IMSNU 20112T (97.1 %). Chemotaxonomic characteristics, including cell-wall diaminopimelic acid, whole-cell sugars, fatty acid components and major menaquinones, suggested that the two organisms belonged to the genus Pseudonocardia. Strains MN08-A0270T and MN08-A0297T could be differentiated from each other and from closely related species of the genus Pseudonocardia by physiological and biochemical characteristics, predominant fatty acids, menaquinones and whole-cell sugar components. Combined with the results of a broad range of phenotypic tests and DNA–DNA hybridization data and phylogenetic analysis, these results support the conclusion that these strains represent two novel species of the genus Pseudonocardia, for which we propose the names Pseudonocardia mongoliensis sp. nov. (type strain MN08-A0270T  = NBRC 105885T  = VTCC D9-25T) and Pseudonocardia khuvsgulensis sp. nov. (type strain MN08-A0297T  = NBRC 105886T  = VTCC D9-26T).


Sign in / Sign up

Export Citation Format

Share Document