scholarly journals Energy-Efficient Allocation for Multiple Tasks in Mobile Edge Computing

Author(s):  
Xi Liu ◽  
Jun Liu

Abstract Mobile edge computing (MEC) allows a mobile device to offload tasks to the nearby server for remote execution to enhance the performance of user equipment. A major challenge of MEC is to design an efficient algorithm for task allocation. In contrast to previous work on MEC, which mainly focuses on single-task allocation for a mobile device with only one task to be completed, this paper considers a mobile device with multiple tasks or an application with multiple tasks. This assumption does not hold in real settings because a mobile device may have multiple tasks waiting to execute. We address the problem of task allocation with minimum total energy consumption considering multi-task settings in MEC, in which a mobile device has one or more tasks. We consider the binary computation offloading mode and formulate multi-task allocation as an integer programming problem that is strongly $NP$-hard. We propose an approximation algorithm and show it is a polynomial-time approximation scheme that saves the maximum energy. Therefore, our proposed algorithm achieves a tradeoff between optimality loss and time complexity. We analyze the performance of the proposed algorithm by performing extensive experiments. The results of the experiments demonstrate that our proposed approximation algorithm is capable of finding near-optimal solutions, and achieves a good balance of speed and quality.

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 96 ◽  
Author(s):  
Yongpeng Shi ◽  
Yujie Xia ◽  
Ya Gao

As an emerging network architecture and technology, mobile edge computing (MEC) can alleviate the tension between the computation-intensive applications and the resource-constrained mobile devices. However, most available studies on computation offloading in MEC assume that the edge severs host various applications and can cope with all kinds of computation tasks, ignoring limited computing resources and storage capacities of the MEC architecture. To make full use of the available resources deployed on the edge servers, in this paper, we study the cross-server computation offloading problem to realize the collaboration among multiple edge servers for multi-task mobile edge computing, and propose a greedy approximation algorithm as our solution to minimize the overall consumed energy. Numerical results validate that our proposed method can not only give near-optimal solutions with much higher computational efficiency, but also scale well with the growing number of mobile devices and tasks.


2020 ◽  
Author(s):  
Yanling Ren ◽  
Zhibin Xie ◽  
Zhenfeng Ding ◽  
xiyuan sun ◽  
Jie Xia ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Author(s):  
Liang Zhao ◽  
Kaiqi Yang ◽  
Zhiyuan Tan ◽  
Houbing Song ◽  
Ahmed Al-Dubai ◽  
...  

Author(s):  
Tong Liu ◽  
Yameng Zhang ◽  
Yanmin Zhu ◽  
Weiqin Tong ◽  
Weiqin Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document