scholarly journals Trends in compound extremes of air temperature and precipitation in Eastern Europe

Author(s):  
Elena Vyshkvarkova ◽  
Olga Sukhonos

Abstract The spatial distribution of compound extremes of air temperature and precipitation was studied over the territory of Eastern Europe for the period 1950–2018 during winter and spring. Using daily data on air temperature and precipitation, we calculated the frequency and trends of the four indices – cold/dry, cold/wet, warm/dry and warm/wet. Also, we studying the connection between these indices and large-scale processes in the ocean-atmosphere system such as North Atlantic Oscillation, East Atlantic Oscillation and Scandinavian Oscillation. The results have shown that positive trends in the region are typical of the combinations with the temperatures above the 75th percentile, i.e., the warm extremes in winter and spring. Negative trends were obtained for the cold extremes. Statistically significant increase in the number of days with warm extremes was observed in the northern parts of the region in winter and spring. The analysis of the impacts of the large-scale processes in oceans-atmosphere system showed that the North Atlantic Oscillation index has a strong positive and statistically significant correlation with the warm indices of compound extremes in the northern part of Eastern Europe in winter, while the Scandinavian Oscillation shows the opposite picture.

Author(s):  
S. A. Lysenko ◽  
V. F. Loginov ◽  
I. V. Buyakov

We have established the relationships of quasicyclic components in changes of air temperature and precipitation in Belarus with large-scale modes of general variability of the atmosphere and ocean in the Atlantic-European region. When the summer air temperature changes in Belarus and in Eastern Europe, a quasi-60-year oscillation is identified, which coincides in phase with the Atlantic multi-decadal oscillation. It is shown that the time series of winter air temperature in Belarus contain a quasi-8-year component synchronized with a similar component of the North Atlantic Oscillation. Moreover, the periods of acceleration and deceleration of winter warming in Belarus coincide with the upward and downward quasi-30-year phases of the North Atlantic Oscillation, respectively. The latter are also consistent with fluctuations in moisture content in Belarus and Europe. Based on the established patterns, we have concluded that the rapid rise in winter temperatures, slowing down of summer warming and deterioration in water supply in the southern regions of Belarus observed in the last decade are part of a natural cycle lasting about 30 years, developing against the background of a long-term trend of anthropogenic global warming. 


2012 ◽  
Vol 16 (5) ◽  
pp. 1389-1399 ◽  
Author(s):  
P. De Vita ◽  
V. Allocca ◽  
F. Manna ◽  
S. Fabbrocino

Abstract. Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results of this study allow for the establishment of a link between a large-scale atmospheric cycle and the groundwater recharge of carbonate karst aquifers. Consequently, the winter NAO index could also be considered as a proxy to forecast the decadal variability of groundwater flow in Mediterranean karst areas.


2016 ◽  
Vol 55 (3) ◽  
pp. 763-771 ◽  
Author(s):  
Jung-Hoon Kim ◽  
William N. Chan ◽  
Banavar Sridhar ◽  
Robert D. Sharman ◽  
Paul D. Williams ◽  
...  

AbstractThe variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment.


2010 ◽  
Vol 49 (8) ◽  
pp. 1597-1603 ◽  
Author(s):  
Robert J. Warren ◽  
Mark A. Bradford

Abstract The North Atlantic Oscillation (NAO) is a large-scale climate teleconnection that coincides with worldwide changes in weather. Its impacts have been documented at large scales, particularly in Europe, but not as much at regional scales. Furthermore, despite documented impacts on ecological dynamics in Europe, the NAO’s influence on North American biota has been somewhat overlooked. This paper examines long-term temperature and precipitation trends in the southern Appalachian Mountain region—a region well known for its biotic diversity, particularly in salamander species—and examines the connections between these trends and NAO cycles. To connect the NAO phase shifts with southern Appalachian ecology, trends in stream salamander abundance are also examined as a function of the NAO index. The results reported here indicate no substantial long-term warming or precipitation trends in the southern Appalachians and suggest a strong relationship between cool season (November–April) temperature and precipitation and the NAO. More importantly, trends in stream salamander abundance are best explained by variation in the NAO as salamanders are most plentiful during the warmer, wetter phases.


2015 ◽  
Vol 96 (7) ◽  
pp. 1499-1505 ◽  
Author(s):  
José Carlos Báez

This study analysed the regime shift of tope shark and the overlapping taxa Raja spp. in the Alboran Sea. Tope shark and Raja spp. landings are both significantly correlated with the North Atlantic Oscillation (NAO). A significant negative correlation was found between Raja spp. landings and tope shark landings. This finding suggests that climatic oscillations affect regime shifts between these taxa in the Alboran Sea. Studies are scarce on the dependence of deep-sea communities on biological and physical processes occurring in near-shore pelagic environments mediated by large-scale atmospheric phenomena. Similar to previous studies on the Mediterranean Sea, a close association was found between landings of deep-water animals and the NAO. The main conclusion is that the regime shift of tope shark and the overlapping taxa Raja spp. is mediated by a negative NAO and accumulated snow.


2015 ◽  
Vol 15 (9) ◽  
pp. 2069-2077 ◽  
Author(s):  
D. Burić ◽  
J. Luković ◽  
B. Bajat ◽  
M. Kilibarda ◽  
N. Živković

Abstract. More intense rainfall may cause a range of negative impacts upon society and the environment. In this study we analysed trends in extreme ETCCDI (Expert Team on Climate Change Detection and Indices) rainfall indices in Montenegro for the period between 1951 and 2010. Montenegro has been poorly studied in terms of rainfall extremes, yet it contains the wettest Mediterranean region known as Krivošije. Several indices of precipitation extremes were assessed including the number of dry days and rainfall totals in order to identify trends and possible changes. A spatial pattern relationship between extreme rainfall indices and the North Atlantic Oscillation has also been examined. The results generally suggest that the number of days with precipitation decreased while rainfall intensity increased, particularly in south-western parts of the country. A slight tendency towards intense rainfall events is suggested. The examined rainfall indices and North Atlantic Oscillation over Montenegro seemed to be directly linked to changes in one of the major large-scale circulation modes such as the NAO pattern that is particularly evident during the winter season.


2013 ◽  
Vol 70 (9) ◽  
pp. 2854-2874 ◽  
Author(s):  
Marie Drouard ◽  
Gwendal Rivière ◽  
Philippe Arbogast

Abstract Ingredients in the North Pacific flow influencing Rossby wave breakings in the North Atlantic and the intraseasonal variations of the North Atlantic Oscillation (NAO) are investigated using both reanalysis data and a three-level quasigeostrophic model on the sphere. First, a long-term run is shown to reproduce the observed relationship between the nature of the synoptic wave breaking and the phase of the NAO. Furthermore, a large-scale, low-frequency ridge anomaly is identified in the northeastern Pacific in the days prior to the maximum of the positive NAO phase both in the reanalysis and in the model. A large-scale northeastern Pacific trough anomaly is observed during the negative NAO phase but does not systematically precede it. Then, short-term linear and nonlinear simulations are performed to understand how the large-scale ridge anomaly can act as a precursor of the positive NAO phase. The numerical setup allows for analysis of the propagation of synoptic waves in the eastern Pacific in the presence of a large-scale ridge or trough anomaly and their downstream impact onto the Atlantic jet when they break. The ridge acts in two ways. First, it tends to prevent the downstream propagation of small waves compared to long waves. Second, it deflects the propagation of the wave trains in such a way that they mainly propagate equatorward in the Atlantic. The two modes of action favor the anticyclonic wave breaking and, therefore, the positive NAO phase. With the trough, the wave train propagation is more zonal, disturbances are more meridionally elongated, and cyclonic wave breaking is more frequent in the Atlantic than in the ridge case.


2009 ◽  
Vol 39 (1) ◽  
pp. 162-184 ◽  
Author(s):  
Kettyah C. Chhak ◽  
Andrew M. Moore ◽  
Ralph F. Milliff

Abstract At middle and high latitudes, the magnitude of stochastic wind stress forcing of the ocean by atmospheric variability on synoptic time scales (i.e., “weather” related variability) is comparable to that of the seasonal cycle. Stochastic forcing may therefore have a significant influence on the ocean circulation, climate, and ocean predictability. Here, the influence of stochastic forcing associated with the North Atlantic Oscillation on the subtropical gyre circulation of the North Atlantic is explored in an eddy-permitting quasigeostrophic framework. For the North Atlantic winds used in this study, the root-mean-square of the annual average Ekman pumping velocity of the seasonal cycle between 35° and 52°N is 1.3 × 10−7 m s−1, while the wintertime standard deviation of the stochastic component of the North Atlantic Oscillation over the same latitude band is 2.2 × 10−7 m s−1. Significant stochastically induced variability in the ocean circulation occurs near the western boundary region and along the western margins of the abyssal plains associated with vortex stretching, energy release from the mean flow, and the generation of topographic Rossby waves. Variability arises from a combination of two effects, depending on the measure of variance used: growth of unstable modes of the underlying circulation and modal interference resulting from their nonnormal nature, which dominates during the first 10 days or so of perturbation growth. Near the surface, most of the variability is associated with large-scale changes in the barotropic circulation, although more than 20% of the energy and enstrophy variability is associated with small-scale baroclinic waves. In the deep ocean, much of the stochastically induced variability is apparently due to topographic Rossby wave activity along the continental rise and ocean ridges. Previous studies have demonstrated that rectification of topographic Rossby wave–induced circulations in the western North Atlantic may contribute to the western boundary current recirculation zones. The authors suggest that a source of topographic Rossby wave energy, significant enough to rectify the mean ocean circulation, may arise from stochastic forcing by large-scale atmospheric forcing, such as the North Atlantic Oscillation and other atmospheric teleconnection patterns.


Sign in / Sign up

Export Citation Format

Share Document