scholarly journals Modelling of Seepage and Slope Stability Analysis of Ribb Embankment Dam, Ethiopia

Author(s):  
Amanuel Zewdu

Abstract Safety against seepage is one in all the primary important steps for checking the possibility of failure of embankment dam and the stability of an embankment dam depends on its geometry, its components, materials, properties of every component, and therefore the forces to which it's subjected. This paper presented seepage and slope stability analysis against Ribb dam safety using finite element-based PLAXIS software, and so the result was compared with different standards. PLAXIS is alternative software that will be used for evaluating the protection of embankment dams due to seepage conditions. The simulated results showed the common rate of flow of seepage through the body of the dam at normal pool level was equal to 5.05*10−6 m3/s/m and through the foundation of the dam was 3.00*10−6 m3/s/m. According to Look (2014) recommendation, the seepage results within the tolerable limit. The results of the factor of safety were considered too different loading conditions. The factor of safety results during the end of construction for both static and dynamic stability analysis were 1.3063 and 1.2226, respectively. For steady-state conditions, the factor of safety obtained for static stability analysis was 1.2604, and also the dynamic analysis 1.1803. The rapid drawdown condition is analyzed with a normal pool level of 1940 m lowered to 1900 m or rapidly reduced 57% of the reservoir water. The analysis results showed that the factor of safety for the static, and dynamic analyses were 1.2021 and 1.0662, respectively. Using different recommended design standards: United States Army Corps of Engineers (USACE), British dam society (BDS), and Canadian dam association (CDA) the slope stability analysis of the Ribb embankment dam at all critical loading conditions is safe.




1983 ◽  
Vol 20 (1) ◽  
pp. 104-119 ◽  
Author(s):  
Zu-Yu Chen ◽  
N. R. Morgenstern

Extensions are suggested to the generalized method of slices that is commonly used in slope stability analysis. It is shown that restrictions exist on the assumptions used to make the problem statically determinate. In addition, a numerical procedure has been developed to find the bounds to the factor of safety, subject to additional requirements of physical admissibility. As a result of these developments it has been possible to produce a revised computer program that appears to overcome the problems of convergence experienced by other programs in current use. Results obtained with this new analysis confirm the reliability of several methods of analysis used in practice.



2018 ◽  
Author(s):  
Darmadi Ir

Abstract Slope stability analysis with SOFTWARE ROCSCIENCE SLIDE case studies in residential barracks of PT. Freport with various variations in loading and conditions show results The greater the load on the slope, the lower the Factor of Safety value. FS values for all methods, sections, and ramp widths are greater in dry than wet conditions. The greater the load distance from the slope, the greater the FS value. At a distance of 3m from the crest slope the decrease in FS value is very significant, in sections 1 and 2 there is still a secure FS value with a load of 50 kN / m, the smaller the overall slope angle (slope) the greater the FS value.Keywords: Slope stability, safety factor, maximum load



2020 ◽  
Author(s):  
Azemeraw Wubalem

Abstract Goncha Siso Eneses area is located in northwestern Ethiopia where landslide incidence is active. The landslide incidence in the area resulted in the devastation of 233.1 hectares of cultivated and non-cultivated land, death of eight people, demolition of five houses, displaced 90 households, and 45 households are under risk. The slope failure in this area also caused tilting of the power line, tilting of two houses, cracking of three-houses floor, failed of bridge and blocking of streams as well as springs. The purpose of this research is to evaluate the cause, failure mechanism, landslide distribution, geotechnical condition of the site, slope stability analysis, and factor of safety determination. Soil sampling, laboratory test, terrain characteristics, groundwater-surface manifestation characterization, groundwater depth determination, slope stability analysis, and factor of safety calculation were the most important activities employed in this research work. Using disturbed and undisturbed soil samples of the selected slope section, Atterberg limit (liquid limit & plastic limit), natural soil moisture, unit weight, specific gravity, and shear strength parameters (cohesion & internal friction angle) test were carryout as ASTM standard. The most marginal factor of safety of the area is determined based on the general limit equilibrium method that encompasses different methods inside using slope/w in GeoStudio 2018 software package considering various groundwater conditions for all selected slope sections. The factor of safety for all selected slope sections of the various method under different groundwater conditions is less than one. Based on the finding of field observation and laboratory results, landslide types (rock/soil slides, rock/earth fall, debris/earth flow, & soil creeping) and landslide factors of the study area (slope angle, slope shape, slope modification, land use, groundwater, soil type, and rainfall) are determined. This research finds out that the soil has a great contribution to slope failure in the study area, besides the soil moisture and improper land use practice.



2001 ◽  
Vol 38 (2) ◽  
pp. 328-337 ◽  
Author(s):  
Da-Yong Zhu

This paper presents a new method for locating critical slip surfaces of general shapes in slope stability analysis. On the basis of the principle of optimality, along with the method of slices, a critical slip field (CSF) in a slope is postulated which consists of a family of slip surfaces having maximum values of unbalanced thrust forces at exit points on the slope face. A numerical procedure is developed for constructing the CSF. The critical slip surface having minimum factor of safety is included in the CSF. All the critical slip surfaces corresponding to all of the exit points are thus determined consecutively, resulting in a global critical slip field (GCSF) which exhibits both global and local slope stability. Comparisons with other methods are made which indicate the high efficiency and accuracy of the proposed approach. Applications of the proposed method to two case examples are given, the results of which demonstrate its applicability to practical engineering.Key words: slope, stability, analysis, factor of safety, critical slip field.



Sign in / Sign up

Export Citation Format

Share Document