scholarly journals Modelling of Seepage and Slope Stability Analysis of Ribb Embankment Dam, Ethiopia

Author(s):  
Amanuel Zewdu

Abstract Safety against seepage is one in all the primary important steps for checking the possibility of failure of embankment dam and the stability of an embankment dam depends on its geometry, its components, materials, properties of every component, and therefore the forces to which it's subjected. This paper presented seepage and slope stability analysis against Ribb dam safety using finite element-based PLAXIS software, and so the result was compared with different standards. PLAXIS is alternative software that will be used for evaluating the protection of embankment dams due to seepage conditions. The simulated results showed the common rate of flow of seepage through the body of the dam at normal pool level was equal to 5.05*10−6 m3/s/m and through the foundation of the dam was 3.00*10−6 m3/s/m. According to Look (2014) recommendation, the seepage results within the tolerable limit. The results of the factor of safety were considered too different loading conditions. The factor of safety results during the end of construction for both static and dynamic stability analysis were 1.3063 and 1.2226, respectively. For steady-state conditions, the factor of safety obtained for static stability analysis was 1.2604, and also the dynamic analysis 1.1803. The rapid drawdown condition is analyzed with a normal pool level of 1940 m lowered to 1900 m or rapidly reduced 57% of the reservoir water. The analysis results showed that the factor of safety for the static, and dynamic analyses were 1.2021 and 1.0662, respectively. Using different recommended design standards: United States Army Corps of Engineers (USACE), British dam society (BDS), and Canadian dam association (CDA) the slope stability analysis of the Ribb embankment dam at all critical loading conditions is safe.

1983 ◽  
Vol 20 (1) ◽  
pp. 104-119 ◽  
Author(s):  
Zu-Yu Chen ◽  
N. R. Morgenstern

Extensions are suggested to the generalized method of slices that is commonly used in slope stability analysis. It is shown that restrictions exist on the assumptions used to make the problem statically determinate. In addition, a numerical procedure has been developed to find the bounds to the factor of safety, subject to additional requirements of physical admissibility. As a result of these developments it has been possible to produce a revised computer program that appears to overcome the problems of convergence experienced by other programs in current use. Results obtained with this new analysis confirm the reliability of several methods of analysis used in practice.


2018 ◽  
Author(s):  
Darmadi Ir

Abstract Slope stability analysis with SOFTWARE ROCSCIENCE SLIDE case studies in residential barracks of PT. Freport with various variations in loading and conditions show results The greater the load on the slope, the lower the Factor of Safety value. FS values for all methods, sections, and ramp widths are greater in dry than wet conditions. The greater the load distance from the slope, the greater the FS value. At a distance of 3m from the crest slope the decrease in FS value is very significant, in sections 1 and 2 there is still a secure FS value with a load of 50 kN / m, the smaller the overall slope angle (slope) the greater the FS value.Keywords: Slope stability, safety factor, maximum load


2001 ◽  
Vol 38 (2) ◽  
pp. 328-337 ◽  
Author(s):  
Da-Yong Zhu

This paper presents a new method for locating critical slip surfaces of general shapes in slope stability analysis. On the basis of the principle of optimality, along with the method of slices, a critical slip field (CSF) in a slope is postulated which consists of a family of slip surfaces having maximum values of unbalanced thrust forces at exit points on the slope face. A numerical procedure is developed for constructing the CSF. The critical slip surface having minimum factor of safety is included in the CSF. All the critical slip surfaces corresponding to all of the exit points are thus determined consecutively, resulting in a global critical slip field (GCSF) which exhibits both global and local slope stability. Comparisons with other methods are made which indicate the high efficiency and accuracy of the proposed approach. Applications of the proposed method to two case examples are given, the results of which demonstrate its applicability to practical engineering.Key words: slope, stability, analysis, factor of safety, critical slip field.


2019 ◽  
Vol 12 (6) ◽  
pp. 163-169
Author(s):  
C. Rajakumar ◽  
P. Kodanda Rama Rao

The slope stability analysis is always under severe threats in many parts of nilgiris district, causing disruption, loss of human life and economy. The stability of slopes depends on the soil shear strength parameters such as Cohesion, Angle of internal friction, Unit weight of soil and Slope geometry. The stability of a slope is measured by its factor of safety using geometric and shear strength parameter based on infinite slopes. In this research, investigation was carried out at 5 locations in Kattery watershed in nilgiris district. The factor of safety of the slope determined by Mohr Coulomb theory based on shear strength parameter calculated from direct shear test which is a conventional procedure for this study. Artificial. Neural Network (ANN) Model is used to predict the factor of safety. The input parameters for the (ANN) are chosen as Cohesion, Angle of internal friction, Density and Slope angle and the factor of safety as output. The results obtained in ANN method were compared with that of conventional method and observed a good agreement between these two methods.


Sign in / Sign up

Export Citation Format

Share Document