scholarly journals TMS-Evoked Prefrontal Perturbation as a Toy Model of Brain Resilience to Stress During the COVID-19 Pandemic

Author(s):  
Ruben Perellón-Alfonso ◽  
María Redondo-Camós ◽  
Kilian Abellaneda-Pérez ◽  
Gabriele Cattaneo ◽  
Selma Delgado-Gallén ◽  
...  

Abstract Psychosocial hardships associated with the COVID-19 pandemic led many individuals to suffer adverse mental health consequences, however, others show no negative effects. We hypothesized that the electroencephalographic (EEG) response to transcranial magnetic stimulation (TMS) could serve as a toy-model of an individual’s capacity to resist psychological stress, in this case linked to the COVID-19 pandemic. We analyzed data from 74 participants who underwent mental health monitoring and concurrent electroencephalography with transcranial magnetic stimulation of the left dorsolateral prefrontal cortex (L-DLPFC) and left inferior parietal lobule (L-IPL). Within the following 19 months, mental health was reassessed at three time points during lock-down confinement and different phases of de-escalation in Spain. Compared with participants who remained stable, those who experienced increased mental distress showed, months earlier, significantly larger late EEG responses locally after L-DLPFC stimulation (but not globally nor after L-IPL stimulation). This response, together with years of formal education, was significantly predictive of mental health status during the pandemic. These findings reveal that the effect of TMS perturbation offers a predictive toy model of psychosocial stress resilience, as exemplified by the COVID-19 pandemic, and point to the L-DLPFC as a promising target for resilience promotion.

2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Yoshihiro Noda ◽  
Mera S. Barr ◽  
Reza Zomorrodi ◽  
Robin F. H. Cash ◽  
Pantelis Lioumis ◽  
...  

Background: The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for non-invasive investigation of cortical response and connectivity in human cortex. This study aimed to examine the amplitudes and latencies of each TMS-evoked potential (TEP) component induced by single-pulse TMS (spTMS) to the left motor (M1) and dorsolateral prefrontal cortex (DLPFC) among healthy young participants (YNG), older participants (OLD), and patients with schizophrenia (SCZ). Methods: We compared the spatiotemporal characteristics of TEPs induced by spTMS among the groups. Results: Compared to YNG, M1-spTMS induced lower amplitudes of N45 and P180 in OLD and a lower amplitude of P180 in SCZ, whereas the DLPFC-spTMS induced a lower N45 in OLD. Further, OLD demonstrated latency delays in P60 after M1-spTMS and in N45-P60 over the right central region after left DLPFC-spTMS, whereas SCZ demonstrated latency delays in N45-P60 over the midline and right central regions after DLPFC-spTMS. Conclusions: These findings suggest that inhibitory and excitatory mechanisms mediating TEPs may be altered in OLD and SCZ. The amplitude and latency changes of TEPs with spTMS may reflect underlying neurophysiological changes in OLD and SCZ, respectively. The spTMS administered to M1 and the DLPFC can probe cortical functions by examining TEPs. Thus, TMS-EEG can be used to study changes in cortical connectivity and signal propagation from healthy to pathological brains.


CNS Spectrums ◽  
2004 ◽  
Vol 9 (5) ◽  
pp. 375-376 ◽  
Author(s):  
Alejandro M. Jiménez-Genchi

AbstractDepersonalization disorder is a poorly understood and treatment-resistant condition. This report describes a patient with depersonalization disorder who underwent six sessions of repetitive transcranial magnetic stimulation on the left dorsolateral prefrontal cortex. Repetitive transcranial magnetic stimulation produced a 28% reduction on depersonalization scores.


Sign in / Sign up

Export Citation Format

Share Document