scholarly journals Towards Understanding the Risks of Gradient Inversion in Federated Learning

Author(s):  
Ali Hatamizadeh ◽  
Hongxu Yin ◽  
Pavlo Molchanov ◽  
Andriy Myronenko ◽  
Wenqi Li ◽  
...  

Abstract Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack that works for more realistic scenarios where the clients’ training involves updating the Batch Normalization (BN) statistics. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics.

2021 ◽  
Author(s):  
Ali Hatamizadeh ◽  
Hongxu Yin ◽  
Pavlo Molchanov ◽  
Andriy Myronenko ◽  
Wenqi Li ◽  
...  

Abstract Federated learning (FL) allows the collaborative training of AI models without needing to share raw data. This capability makes it especially interesting for healthcare applications where patient and data privacy is of utmost concern. However, recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data. In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack that works for more realistic scenarios where the clients’ training involves updating the Batch Normalization (BN) statistics. Furthermore, we present new ways to measure and visualize potential data leakage in FL. Our work is a step towards establishing reproducible methods of measuring data leakage in FL and could help determine the optimal tradeoffs between privacy-preserving techniques, such as differential privacy, and model accuracy based on quantifiable metrics.


2020 ◽  
Vol 10 (6) ◽  
pp. 2104
Author(s):  
Michał Tomaszewski ◽  
Paweł Michalski ◽  
Jakub Osuchowski

This article presents an analysis of the effectiveness of object detection in digital images with the application of a limited quantity of input. The possibility of using a limited set of learning data was achieved by developing a detailed scenario of the task, which strictly defined the conditions of detector operation in the considered case of a convolutional neural network. The described solution utilizes known architectures of deep neural networks in the process of learning and object detection. The article presents comparisons of results from detecting the most popular deep neural networks while maintaining a limited training set composed of a specific number of selected images from diagnostic video. The analyzed input material was recorded during an inspection flight conducted along high-voltage lines. The object detector was built for a power insulator. The main contribution of the presented papier is the evidence that a limited training set (in our case, just 60 training frames) could be used for object detection, assuming an outdoor scenario with low variability of environmental conditions. The decision of which network will generate the best result for such a limited training set is not a trivial task. Conducted research suggests that the deep neural networks will achieve different levels of effectiveness depending on the amount of training data. The most beneficial results were obtained for two convolutional neural networks: the faster region-convolutional neural network (faster R-CNN) and the region-based fully convolutional network (R-FCN). Faster R-CNN reached the highest AP (average precision) at a level of 0.8 for 60 frames. The R-FCN model gained a worse AP result; however, it can be noted that the relationship between the number of input samples and the obtained results has a significantly lower influence than in the case of other CNN models, which, in the authors’ assessment, is a desired feature in the case of a limited training set.


2020 ◽  
Vol 34 (01) ◽  
pp. 784-791 ◽  
Author(s):  
Qinbin Li ◽  
Zhaomin Wu ◽  
Zeyi Wen ◽  
Bingsheng He

The Gradient Boosting Decision Tree (GBDT) is a popular machine learning model for various tasks in recent years. In this paper, we study how to improve model accuracy of GBDT while preserving the strong guarantee of differential privacy. Sensitivity and privacy budget are two key design aspects for the effectiveness of differential private models. Existing solutions for GBDT with differential privacy suffer from the significant accuracy loss due to too loose sensitivity bounds and ineffective privacy budget allocations (especially across different trees in the GBDT model). Loose sensitivity bounds lead to more noise to obtain a fixed privacy level. Ineffective privacy budget allocations worsen the accuracy loss especially when the number of trees is large. Therefore, we propose a new GBDT training algorithm that achieves tighter sensitivity bounds and more effective noise allocations. Specifically, by investigating the property of gradient and the contribution of each tree in GBDTs, we propose to adaptively control the gradients of training data for each iteration and leaf node clipping in order to tighten the sensitivity bounds. Furthermore, we design a novel boosting framework to allocate the privacy budget between trees so that the accuracy loss can be further reduced. Our experiments show that our approach can achieve much better model accuracy than other baselines.


Author(s):  
C. Swetha Reddy Et.al

Surprisingly comprehensive learning methods are implemented in many large learning machine data, such as visual recognition and visual language processing. Much of the success of advanced training in recent years is due to leadership training, which requires a set of information for specific tasks, before such training. However, in reality, selected tasks related to personal study are gradually accumulated over time as it is difficult to collect and submit training data manually. It provides a way to continue learning some information columns and examples of steps that are specific to the new class and called additional learning. In this post, we recommend the best machine training method for further training for deep neural networks. The basic idea is to learn a deep system with strong connections that can be "activated" or "turned off" at different stages. The approach you suggest allows you to reduce the distribution of old services as you learn new for example new training, which increases the effectiveness of training in the additional training phase. Experiments with MNIST and CIFAR-100 show that our approach can be implemented in other long-term phases in deep neuron models and achieve better results from zero-base training.


Author(s):  
Mohammad Amin Nabian ◽  
Hadi Meidani

Abstract In this paper, we introduce a physics-driven regularization method for training of deep neural networks (DNNs) for use in engineering design and analysis problems. In particular, we focus on the prediction of a physical system, for which in addition to training data, partial or complete information on a set of governing laws is also available. These laws often appear in the form of differential equations, derived from first principles, empirically validated laws, or domain expertise, and are usually neglected in a data-driven prediction of engineering systems. We propose a training approach that utilizes the known governing laws and regularizes data-driven DNN models by penalizing divergence from those laws. The first two numerical examples are synthetic examples, where we show that in constructing a DNN model that best fits the measurements from a physical system, the use of our proposed regularization results in DNNs that are more interpretable with smaller generalization errors, compared with other common regularization methods. The last two examples concern metamodeling for a random Burgers’ system and for aerodynamic analysis of passenger vehicles, where we demonstrate that the proposed regularization provides superior generalization accuracy compared with other common alternatives.


2019 ◽  
Vol 34 (4) ◽  
pp. 349-363 ◽  
Author(s):  
Thinh Van Nguyen ◽  
Bao Quoc Nguyen ◽  
Kinh Huy Phan ◽  
Hai Van Do

In this paper, we present our first Vietnamese speech synthesis system based on deep neural networks. To improve the training data collected from the Internet, a cleaning method is proposed. The experimental results indicate that by using deeper architectures we can achieve better performance for the TTS than using shallow architectures such as hidden Markov model. We also present the effect of using different amounts of data to train the TTS systems. In the VLSP TTS challenge 2018, our proposed DNN-based speech synthesis system won the first place in all three subjects including naturalness, intelligibility, and MOS.


Author(s):  
Ulas Isildak ◽  
Alessandro Stella ◽  
Matteo Fumagalli

1AbstractBalancing selection is an important adaptive mechanism underpinning a wide range of phenotypes. Despite its relevance, the detection of recent balancing selection from genomic data is challenging as its signatures are qualitatively similar to those left by ongoing positive selection. In this study we developed and implemented two deep neural networks and tested their performance to predict loci under recent selection, either due to balancing selection or incomplete sweep, from population genomic data. Specifically, we generated forward-intime simulations to train and test an artificial neural network (ANN) and a convolutional neural network (CNN). ANN received as input multiple summary statistics calculated on the locus of interest, while CNN was applied directly on the matrix of haplotypes. We found that both architectures have high accuracy to identify loci under recent selection. CNN generally outperformed ANN to distinguish between signals of balancing selection and incomplete sweep and was less affected by incorrect training data. We deployed both trained networks on neutral genomic regions in European populations and demonstrated a lower false positive rate for CNN than ANN. We finally deployed CNN within the MEFV gene region and identified several common variants predicted to be under incomplete sweep in a European population. Notably, two of these variants are functional changes and could modulate susceptibility to Familial Mediterranean Fever, possibly as a consequence of past adaptation to pathogens. In conclusion, deep neural networks were able to characterise signals of selection on intermediate-frequency variants, an analysis currently inaccessible by commonly used strategies.


Sign in / Sign up

Export Citation Format

Share Document