privacy budget
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 35)

H-INDEX

3
(FIVE YEARS 2)

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Ryan Rogers ◽  
Subbu Subramaniam ◽  
Sean Peng ◽  
David Durfee ◽  
Seunghyun Lee ◽  
...  

We present a privacy system that leverages differential privacy to protect LinkedIn members' data while also providing audience engagement insights to enable marketing analytics related applications. We detail the differentially private algorithms and other privacy safeguards used to provide results that can be used with existing real-time data analytics platforms, specifically with the open sourced Pinot system. Our privacy system provides user-level privacy guarantees. As part of our privacy system, we include a budget management service that enforces a strict differential privacy budget on the returned results to the analyst. This budget management service brings together the latest research in differential privacy into a product to maintain utility given a fixed differential privacy budget.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yunlu Bai ◽  
Geng Yang ◽  
Yang Xiang ◽  
Xuan Wang

For data analysis with differential privacy, an analysis task usually requires multiple queries to complete, and the total budget needs to be divided into different parts and allocated to each query. However, at present, the budget allocation in differential privacy lacks efficient and general allocation strategies, and most of the research tends to adopt an average or exclusive allocation method. In this paper, we propose two series strategies for budget allocation: the geometric series and the Taylor series. We show the different characteristics of the two series and provide a calculation method for selecting the key parameters. To better reflect a user’s preference of noise during the allocation, we explored the relationship between sensitivity and noise in detail, and, based on this, we propose an optimization for the series strategies. Finally, to prevent collusion attacks and improve security, we provide three ideas for protecting the budget sequence. Both the theoretical analysis and experimental results show that our methods can support more queries and achieve higher utility. This shows that our series allocation strategies have a high degree of flexibility which can meet the user’s need and allow them to be better applied to differentially private algorithms to achieve high performance while maintaining the security.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuxia Chang ◽  
Chen Fang ◽  
Wenzhuo Sun

The development of artificial intelligence and worldwide epidemic events has promoted the implementation of smart healthcare while bringing issues of data privacy, malicious attack, and service quality. The Medical Internet of Things (MIoT), along with the technologies of federated learning and blockchain, has become a feasible solution for these issues. In this paper, we present a blockchain-based federated learning method for smart healthcare in which the edge nodes maintain the blockchain to resist a single point of failure and MIoT devices implement the federated learning to make full of the distributed clinical data. In particular, we design an adaptive differential privacy algorithm to protect data privacy and gradient verification-based consensus protocol to detect poisoning attacks. We compare our method with two similar methods on a real-world diabetes dataset. Promising experimental results show that our method can achieve high model accuracy in acceptable running time while also showing good performance in reducing the privacy budget consumption and resisting poisoning attacks.


2021 ◽  
Vol 38 (5) ◽  
pp. 1385-1401
Author(s):  
Chao Liu ◽  
Jing Yang ◽  
Weinan Zhao ◽  
Yining Zhang ◽  
Cuiping Shi ◽  
...  

Face images, as an information carrier, are rich in sensitive information. Direct publication of these images would cause privacy leak, due to their natural weak privacy. Most of the existing privacy protection methods for face images adopt data publication under a non-interactive framework. However, the E-effect under this framework covers the entire image, such that the noise influence is uniform across the image. To solve the problem, this paper proposes region growing publication (RGP), an algorithm for the interactive publication of face images under differential privacy. This innovative algorithm combines the region growing technique with differential privacy technique. The privacy budget E is dynamically allocated, and the Laplace noise is added, according to the similarity between adjacent sub-images. To measure this similarity more effectively, the fusion similarity measurement mechanism (FSMM) was designed, which better adapts to the intrinsic attributes of images. Different from traditional region growing rules, the FSMM fully considers various attributes of images, including brightness, contrast, structure, color, texture, and spatial distribution. To further enhance algorithm feasibility, RGP was extended to atypical region growing publication (ARGP). While RGP limits the region growing direction between adjacent sub-images, ARGP searches for the qualified sub-images across the image, with the aid of the exponential mechanism, thereby expanding the region merging scope of the seed point. The results show that our algorithm can satisfy E-differential privacy, and the denoised image still have a high availability.


Author(s):  
Wenchao Jiang ◽  
Zongxin Ma ◽  
Suisheng Li ◽  
Hong Xiao ◽  
Jianren Yang

Author(s):  
Lichao Sun ◽  
Jianwei Qian ◽  
Xun Chen

Training deep learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of raw data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to two issues. First, the range difference of weights in different deep learning model layers has not been explicitly considered when applying local differential privacy mechanism. Second, the privacy budget explodes due to the high dimensionality of weights in deep learning models and many query iterations of federated learning. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It makes the local weights update differentially private by adapting to the varying ranges at different layers of a deep neural network, which introduces a smaller variance of the estimated model weights, especially for deeper models. Moreover, the proposed mechanism bypasses the curse of dimensionality by parameter shuffling aggregation. A series of empirical evaluations on three commonly used datasets in prior differential privacy works, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.


Author(s):  
Lichao Sun ◽  
Lingjuan Lyu

Conventional federated learning directly averages model weights, which is only possible for collaboration between models with homogeneous architectures. Sharing prediction instead of weight removes this obstacle and eliminates the risk of white-box inference attacks in conventional federated learning. However, the predictions from local models are sensitive and would leak training data privacy to the public. To address this issue, one naive approach is adding the differentially private random noise to the predictions, which however brings a substantial trade-off between privacy budget and model performance. In this paper, we propose a novel framework called FEDMD-NFDP, which applies a Noise-FreeDifferential Privacy (NFDP) mechanism into a federated model distillation framework. Our extensive experimental results on various datasets validate that FEDMD-NFDP can deliver not only comparable utility and communication efficiency but also provide a noise-free differential privacy guarantee. We also demonstrate the feasibility of our FEDMD-NFDP by considering both IID and Non-IID settings, heterogeneous model architectures, and unlabelled public datasets from a different distribution.


2021 ◽  
Vol 2021 (4) ◽  
pp. 163-183
Author(s):  
Wenxiao Wang ◽  
Tianhao Wang ◽  
Lun Wang ◽  
Nanqing Luo ◽  
Pan Zhou ◽  
...  

Abstract Deep learning techniques have achieved remarkable performance in wide-ranging tasks. However, when trained on privacy-sensitive datasets, the model parameters may expose private information in training data. Prior attempts for differentially private training, although offering rigorous privacy guarantees, lead to much lower model performance than the non-private ones. Besides, different runs of the same training algorithm produce models with large performance variance. To address these issues, we propose DPlis– Differentially Private Learning wIth Smoothing. The core idea of DPlis is to construct a smooth loss function that favors noise-resilient models lying in large flat regions of the loss landscape. We provide theoretical justification for the utility improvements of DPlis. Extensive experiments also demonstrate that DPlis can effectively boost model quality and training stability under a given privacy budget.


Author(s):  
Elena Battaglia ◽  
Simone Celano ◽  
Ruggero G. Pensa

AbstractMost privacy-preserving machine learning methods are designed around continuous or numeric data, but categorical attributes are common in many application scenarios, including clinical and health records, census and survey data. Distance-based methods, in particular, have limited applicability to categorical data, since they do not capture the complexity of the relationships among different values of a categorical attribute. Although distance learning algorithms exist for categorical data, they may disclose private information about individual records if applied to a secret dataset. To address this problem, we introduce a differentially private family of algorithms for learning distances between any pair of values of a categorical attribute according to the way they are co-distributed with the values of other categorical attributes forming the so-called context. We define different variants of our algorithm and we show empirically that our approach consumes little privacy budget while providing accurate distances, making it suitable in distance-based applications, such as clustering and classification.


2021 ◽  
Vol 14 (10) ◽  
pp. 1805-1817
Author(s):  
David Pujol ◽  
Yikai Wu ◽  
Brandon Fain ◽  
Ashwin Machanavajjhala

Large organizations that collect data about populations (like the US Census Bureau) release summary statistics that are used by multiple stakeholders for resource allocation and policy making problems. These organizations are also legally required to protect the privacy of individuals from whom they collect data. Differential Privacy (DP) provides a solution to release useful summary data while preserving privacy. Most DP mechanisms are designed to answer a single set of queries. In reality, there are often multiple stakeholders that use a given data release and have overlapping but not-identical queries. This introduces a novel joint optimization problem in DP where the privacy budget must be shared among different analysts. We initiate study into the problem of DP query answering across multiple analysts. To capture the competing goals and priorities of multiple analysts, we formulate three desiderata that any mechanism should satisfy in this setting - The Sharing Incentive, Non-interference, and Adaptivity - while still optimizing for overall error. We demonstrate how existing DP query answering mechanisms in the multi-analyst settings fail to satisfy at least one of the desiderata. We present novel DP algorithms that provably satisfy all our desiderata and empirically show that they incur low error on realistic tasks.


Sign in / Sign up

Export Citation Format

Share Document