scholarly journals Uncovering the Genetic Diversity of Giardia Isolates from Outbreaks in New Zealand

Author(s):  
Paul Ogbuigwe ◽  
Patrick J. Biggs ◽  
Juan Carlos Garcia-Ramirez ◽  
Matthew A. Knox ◽  
Anthony Pita ◽  
...  

Abstract BackgroundGiardia is one of the most common causes of diarrhoea in the world and is a notifiable disease in New Zealand. Recent advances in molecular techniques, such as PCR and Sanger sequencing, have greatly improved our understanding of the taxonomic classification and epidemiology of this parasite. However, there has been an inability to identify shared subtypes between samples from the same epidemiologically linked cases, due to samples showing multiple dominant subtypes within the same outbreak when characterised using Sanger sequencing. MethodsHere, NGS was employed to uncover the genetic diversity within samples from sporadic and outbreak cases of giardiasis that occurred in New Zealand between 2010 and 2018. ResultsThis strategy exposed the significant diversity of subtypes of Giardia present in each sample. The utilisation of NGS and metabarcoding at the glutamate dehydrogenase (gdh) locus enabled the identification of shared subtypes between samples from shared outbreaks, providing a better understanding of the epidemiology of outbreaks of giardiasis in New Zealand.ConclusionsNext-generation sequencing technologies provides a superior tool, when compared to consensus sequencing technologies, for capturing the genetic diversity of Giardia within hosts. This study showed that infections in humans are frequently mixed, with multiple subtypes present in each host.

2008 ◽  
Vol 18 (10) ◽  
pp. 1638-1642 ◽  
Author(s):  
D. R. Smith ◽  
A. R. Quinlan ◽  
H. E. Peckham ◽  
K. Makowsky ◽  
W. Tao ◽  
...  

2011 ◽  
Vol 16 (11-12) ◽  
pp. 512-519 ◽  
Author(s):  
Peter M. Woollard ◽  
Nalini A.L. Mehta ◽  
Jessica J. Vamathevan ◽  
Stephanie Van Horn ◽  
Bhushan K. Bonde ◽  
...  

2016 ◽  
Vol 44 (2) ◽  
pp. 431-436 ◽  
Author(s):  
Masoumeh YOUSEFIAZARKHANIAN ◽  
Ali ASGHARI ◽  
Jafar AHMADI ◽  
Behvar ASGHARI ◽  
Ali Ashraf JAFARI

The genus Salvia includes an enormous assemblage of nearly 1,000 species dispersed around the world. Due to possible threats to this genus, there is an immediate requirement to evaluate the diversity of its wild populations. ISSR and RAPD molecular techniques were used to evaluate the genetic relationships among twenty-one ecotypes of eight Salvia species. Amplification of genomic DNA using 23 primers (15 RAPD and eight ISSR) produced 280 bands, of which 91% were polymorphic. The results of marker parameters showed no clear difference between two marker systems. It was generally observed that both ISSR and RAPD markers had similar efficiency in detecting genetic polymorphisms with remarkable ability to differentiate the closely related ecotypes of Salvia. Nei’s similarity coefficients for these techniques ranged from 0.48 to 0.98. Based on the results of clustering, PCoA and AMOVA, the genetic diversity between and within species was confirmed. So, conservation and domestication of the genus Salvia must be due to levels of genetic variations.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Daniela Barros-Silva ◽  
C. Marques ◽  
Rui Henrique ◽  
Carmen Jerónimo

DNA methylation is an epigenetic modification that plays a pivotal role in regulating gene expression and, consequently, influences a wide variety of biological processes and diseases. The advances in next-generation sequencing technologies allow for genome-wide profiling of methyl marks both at a single-nucleotide and at a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, coverage, and bioinformatics analysis. Thus, the selection of the most feasible method according with the project’s purpose requires in-depth knowledge of those techniques. Currently, high-throughput sequencing techniques are intensively used in epigenomics profiling, which ultimately aims to find novel biomarkers for detection, diagnosis prognosis, and prediction of response to therapy, as well as to discover new targets for personalized treatments. Here, we present, in brief, a portrayal of next-generation sequencing methodologies’ evolution for profiling DNA methylation, highlighting its potential for translational medicine and presenting significant findings in several diseases.


2021 ◽  
Author(s):  
Ahmed S Fahad ◽  
Cheng Yu Chung ◽  
Sheila N. Lopez Acevedo ◽  
Nicoleen Boyle ◽  
Bharat Madan ◽  
...  

Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. Here we developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale. To exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen- specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of human TCRs against diverse antigen targets associated with health, vaccination, or disease.


Sign in / Sign up

Export Citation Format

Share Document