Practical Tracking Control Under Actuator Saturation for a Class of Flexible-Joint Robotic Manipulators Driven by DC Motors

Author(s):  
Jian Li ◽  
Lingling Zhu

Abstract This paper is devoted to the practical tracking control for a class of flexible-joint robotic manipulators driven by DC motors. Different from the related literature where control constraint is neglected and the disturbances are excluded or only exist in one subsystem, actuator saturation is considered in this paper while the disturbances are present in all the three subsystems. This leads to the incapability of the traditional schemes on this topic. For this, a novel control design scheme is proposed by skillfully incorporating adaptive dynamic compensation technique, constructive methods of command filters and an auxiliary system for the actuator saturation into the backstepping framework, and in turn to design a practical tracking controller which ensures that all the states of the resulting closed-loop system are bounded and the system output practically tracks the reference signal. It is worthwhile strengthening that a more wider class of reference signals can be tracked since they are only first order continuously differentiable but twice or more in the related literature. Finally, a numerical example is provided to validate the effectiveness of the proposed theoretical results.

2021 ◽  
Author(s):  
Jian Li ◽  
Wenqing Xu ◽  
Zhaojing Wu ◽  
Yungang Liu

Abstract This paper is devoted to the tracking control of a class of uncertain surface vessels. The main contributions focus on the considerable relaxation of the severe restrictions on system uncertainties and reference trajectory in the related literature. Specifically, all the system parameters are unknown and the disturbance is not necessarily to be differentiable in the paper, but either unknown parameters or disturbance is considered but the other one is excluded in the related literature, or both of them are considered but the disturbance must be continuously differentiable. Moreover, the reference trajectories in the related literature must be at least twice continuously differentiable and themselves as well as their time derivatives must be known for feedback, which are generalized to a more broad class ones that are unknown and only one time continuously differentiable in the paper. To solve the control problem, a novel practical tracking control scheme is presented by using backstepping scheme and adaptive technique, and in turn to derive an adaptive state-feedback controller which guarantees that all the states of the resulting closed-loop system are bounded while the tracking error arrives at and then stay within an arbitrary neighborhood of the origin. Finally, simulation is provided to validate the effectiveness of the proposed theoretical results.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
J. W. Yu ◽  
X. H. Zhang ◽  
J. C. Ji ◽  
J. Y. Tian ◽  
J. Zhou

Abstract This paper addresses the region-reaching control problem for a flexible-joint robotic manipulator which is formulated by Lagrangian dynamics. An adaptive control scheme is proposed for the manipulator system having two constrained regions which are constructed by selecting appropriate objective functions. The two joints of the flexible-joint manipulator can be, respectively, confined in different regions, and this gives more flexibility than the traditional fixed-point tracking control. By performing a straightforward Lyapunov stability analysis, a simple control algorithm is established to provide a solution for the region-reaching control problem. Finally, numerical simulations are given to validate the theoretical results.


Author(s):  
Nobutaka Wada ◽  
Hidekazu Miyahara ◽  
Masami Saeki

In this paper, a tracking control problem for discrete-time linear systems with actuator saturation is addressed. The reference signal is assumed to be generated by an external dynamics. First, a design condition of a controller parameterized by a single scheduling parameter is introduced. The controller includes a servo compensator to achieve zero steady-state error. Then, a control algorithm that guarantees closed-loop stability and makes the tracking error converge to zero is given. In the control algorithm, the controller state as well as the scheduling parameter is updated online so that the tracking control performance is improved. Then, it is shown that the decision problem of the scheduling parameter and the controller state can be transformed into a convex optimization problem with respect to a scalar parameter. Based on this fact, we propose a numerically efficient algorithm for solving the optimization problem. Further, we propose a method of modifying the control algorithm so that the asymptotic tracking property is ensured even when the numerical error exists in the optimal solution. A numerical example and an experimental result are provided to illustrate effectiveness of the proposed control method.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


2014 ◽  
Vol 663 ◽  
pp. 127-134 ◽  
Author(s):  
M.H. Che Hasan ◽  
Y.M. Sam ◽  
Ke Mao Peng ◽  
Muhamad Khairi Aripin ◽  
Muhamad Fahezal Ismail

In this paper, Composite Nonlinear Feedback (CNF) is applied on Active Front Steering (AFS) system for vehicle yaw stability control in order to have an excellent transient response performance. The control method, which has linear and nonlinear parts that work concurrently capable to track reference signal very fast with minimum overshoot, fast settling time, and without exceed nature of actuator saturation limit. Beside, modelling of 7 degree of freedom for typical passenger car with magic formula to represent tyre nonlinearity behaviour is also presented to simulate controlled vehicle as close as possible with a real situation. An extensive computer simulation is performed with considering a various profile of cornering manoeuvres with external disturbance to evaluate its performance in different scenarios. The performance of the proposed controller is compared to conventional Proportional Integration and Derivative (PID) for effectiveness analysis.


Sign in / Sign up

Export Citation Format

Share Document