Composite Nonlinear Feedback for Vehicle Active Front Steering

2014 ◽  
Vol 663 ◽  
pp. 127-134 ◽  
Author(s):  
M.H. Che Hasan ◽  
Y.M. Sam ◽  
Ke Mao Peng ◽  
Muhamad Khairi Aripin ◽  
Muhamad Fahezal Ismail

In this paper, Composite Nonlinear Feedback (CNF) is applied on Active Front Steering (AFS) system for vehicle yaw stability control in order to have an excellent transient response performance. The control method, which has linear and nonlinear parts that work concurrently capable to track reference signal very fast with minimum overshoot, fast settling time, and without exceed nature of actuator saturation limit. Beside, modelling of 7 degree of freedom for typical passenger car with magic formula to represent tyre nonlinearity behaviour is also presented to simulate controlled vehicle as close as possible with a real situation. An extensive computer simulation is performed with considering a various profile of cornering manoeuvres with external disturbance to evaluate its performance in different scenarios. The performance of the proposed controller is compared to conventional Proportional Integration and Derivative (PID) for effectiveness analysis.

2014 ◽  
Vol 554 ◽  
pp. 526-530 ◽  
Author(s):  
Liyana Ramli ◽  
Yahya M. Sam ◽  
Zaharuddin Mohamed ◽  
Muhamad Khairi Aripin ◽  
Muhamad Fahezal Ismail

Yaw stability control is the most popular topics in the automotive field. Several studies have been done in searching the effective method in controlling yaw moment. Hence, an integration of the active front steering system (AFS) with Composite Nonlinear Feedback controller is presented in this paper. Recently, this controller has been used by a lot of researchers in controlling their system performance due to its main advantage that can be seen in transient response which demonstrate super fast tracking. An optimal CNF feedback control problem is formulated as a parameter optimization problem with performance index and restrictions on stability. To handle such restrictions and constraint, the particle swarm optimization algorithm is applied to solve parameter optimization problems.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Mohd Hanif Che Hasan ◽  
Yahaya Md Sam ◽  
Muhamad Khairi Aripin ◽  
Mohamad Haniff Harun ◽  
Syahrul Hisham Mohamad

In this paper, Robust Composite Nonlinear Feedback (CNF) was implemented on Active Front Steering (AFS) vehicle system for yaw stability control. In this control system, the main objective is to get excellent transient response of vehicle yaw rate and at the same time resist to side wind disturbance. To cater unknown constant disturbance, non-integral function for Robust CNF version is used. Meanwhile for vehicle model, 7 degree of freedom vehicle body with Pacejka Tire formula model for typical passenger car is used to simulate controlled vehicle. The computer simulation by Matlab software is performed to evaluate the system performance in J-Turn and Single sine steer with magnitude from 1 to 3.1 degree with additional 400 Nm external side wind disturbance. By using typical Proportional Integration and Derivative (PID) control auto-tuned by Matlab as comparison, the new designed controller demonstrates higher capability to track reference signal faster and having minimal tracking error during disturbance occur where having less than 0.01 degree compared 0.22 degree by PID. The Robust CNF based designed control system is able to compensate disturbance effect efficiently and also has super-fast tracking as classical CNF.


2016 ◽  
Vol 40 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Tahereh Binazadeh ◽  
Majid Bahmani

This paper considers the problem of output tracking of a time-varying reference signal for a class of uncertain systems in the presence of actuator saturation. To achieve this capability, a new controller is proposed by robustifying the generalized composite nonlinear feedback control method with the integral sliding mode controller. Since the proposed controller may be saturated, a precise analysis is done to show its robust performance despite the presence of actuator saturation and model uncertainties. For this purpose, a theorem is given and proved that guarantees the robust output tracking via the proposed control law for three different cases of the saturation function and it is shown that even if the control signal is saturated, the proposed controller achieves output tracking of the time-varying reference signal. Also, in order to show the applicability of the proposed controller, it is applied on two practical systems, the XY-table and inertia wheel inverted pendulum. Computer simulations verify the theoretical results and also display the effective performance of the proposed controller.


Author(s):  
Sonal Singh ◽  
Shubhi Purwar

Background and Introduction: The proposed control law is designed to provide fast reference tracking with minimal overshoot and to minimize the effect of unknown nonlinearities and external disturbances. Methods: In this work, an enhanced composite nonlinear feedback technique using adaptive control is developed for a nonlinear delayed system subjected to input saturation and exogenous disturbances. It ensures that the plant response is not affected by adverse effect of actuator saturation, unknown time delay and unknown nonlinearities/ disturbances. The analysis of stability is done by Lyapunov-Krasovskii functional that guarantees asymptotical stability. Results: The proposed control law is validated by its implementation on exothermic chemical reactor. MATLAB figures are provided to compare the results. Conclusion: The simulation results of the proposed controller are compared with the conventional composite nonlinear feedback control which illustrates the efficiency of the proposed controller.


2018 ◽  
Vol 38 (5) ◽  
pp. 558-567 ◽  
Author(s):  
Hua Chen ◽  
Lei Chen ◽  
Qian Zhang ◽  
Fei Tong

Purpose The finite-time visual servoing control problem is considered for dynamic wheeled mobile robots (WMRs) with unknown control direction and external disturbance. Design/methodology/approach By using finite-time control method and switching design technique. Findings First, the visual servoing kinematic WMR model is developed, which can be converted to the dynamic chained-form systems by using a state and input feedback transformation. Then, for two decoupled subsystems of the chained-form systems, according to the finite-time stability control theory, a discontinuous three-step switching control strategy is proposed in the presence of uncertain control coefficients and external disturbance. Originality/value A class of discontinuous anti-interference control method has been presented for the dynamic nonholonomic systems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chuang Cheng ◽  
Hui Zhang ◽  
Hui Peng ◽  
Zhiqian Zhou ◽  
Bailiang Chen ◽  
...  

Purpose When the mobile manipulator is traveling on an unconstructed terrain, the external disturbance is generated. The load on the end of the mobile manipulator will be affected strictly by the disturbance. The purpose of this paper is to reject the disturbance and keep the end effector in a stable pose all the time, a control method is proposed for the onboard manipulator. Design/methodology/approach In this paper, the kinematics and dynamics models of the end pose stability control system for the tracked robot are built. Through the guidance of this model information, the control framework based on active disturbance rejection control (ADRC) is designed, which keeps the attitude of the end of the manipulator stable in the pitch, roll and yaw direction. Meanwhile, the control algorithm is operated with cloud computing because the research object, the rescue robot, aims to be lightweight and execute work with remote manipulation. Findings The challenging simulation experiments demonstrate that the methodology can achieve valid stability control performance in the challenging terrain road in terms of robustness and real-time. Originality/value This research facilitates the stable posture control of the end-effector of the mobile manipulator and maintains it in a suitable stable operating environment. The entire system can normally work even in dynamic disturbance scenarios and uncertain nonlinear modeling. Furthermore, an example is given to guide the parameter tuning of ADRC by using model information and estimate the unknown internal modeling uncertainty, which is difficult to be modeled or identified.


2015 ◽  
Vol 72 (2) ◽  
Author(s):  
Liyana Ramli ◽  
Yahaya Md. Sam ◽  
Zaharuddin Mohamed ◽  
M. Khairi Aripin ◽  
M. Fahezal Ismail

The purpose of controlling the vehicle handling is to ensure that the vehicle is in a safe condition and following its desire path. Vehicle yaw rate is controlled in order to achieve a good vehicle handling. In this paper, the optimal Composite Nonlinear Feedback (CNF) control technique is proposed for an Active Front Steering (AFS) system for improving the vehicle yaw rate response. The model used in order to validate the performance of controller is nonlinear vehicle model with 7 degree-of-freedom (DOF) and a bicycle model is implemented for the purpose of designing the controller. In designing an optimal CNF controller, the parameter estimation of linear and nonlinear gain becomes very important to produce the best output response. An intelligent algorithm is designed to minimize the time consumed to get the best parameter. To design an optimal method, Multi Objective Particle Swarm Optimization (MOPSO) is utilized to optimize the CNF controller performance. As a result, transient performance of the yaw rate has improved with the increased speed of in tracking and searching of the best optimized parameter estimation for the linear and the nonlinear gain of CNF controller.  


2013 ◽  
Vol 765-767 ◽  
pp. 1903-1907
Author(s):  
Jie Wei ◽  
Guo Biao Shi ◽  
Yi Lin

This paper proposes using BP neural network PID to improve the yaw stability of the vehicle with active front steering system. A dynamic model of vehicle with active front steering is built firstly, and then the BP neural network PID controller is designed in detail. The controller generates the suitable steering angle so that the vehicle follows the target value of the yaw rate. The simulation at different conditions is carried out based on the fore established model. The simulation results show the BP neural network PID controller can improve the vehicles yaw stability effectively.


2004 ◽  
Vol 14 (05) ◽  
pp. 1671-1681 ◽  
Author(s):  
MAO-YIN CHEN ◽  
ZHENG-ZHI HAN ◽  
YUN SHANG ◽  
GUANG-DENG ZONG

Combining the backstepping design and the variable structure control, we propose a robust nonlinear feedback control method to control an uncertain van der Pol oscillator even if there exist system uncertainties and external disturbances in this oscillator. If system uncertainties are estimated and some parameters are chosen suitably, the output of van der Pol osicllator can track arbitrary smooth reference signal. Theoretical analysis and numerical simulations verify the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document