scholarly journals Sex Differences in the Relationship of Hip Strength and Functional Performance to Chronic Ankle Instability Scores

Author(s):  
Junlan Lu ◽  
Zhigang Wu ◽  
Roger Adams ◽  
Jia Han ◽  
Cai Bin

Abstract Background: Preliminary studies have reported differences in strength and functional performance between sexes for patients with anterior cruciate ligament injury or reconstruction. Similar sex differences may occur in chronic ankle instability (CAI) populations. Factors like hip abduction strength and functional performance may be contributors to sex differences in CAI populations, but their presence and magnitude is unclear. While decreased hip abductor strength, functional performance, and self-reported instability scores have all been shown in association with CAI, any sex difference in the relationship between these indicators is unclear. The study was to determine if sex differences are present in the relationship between these indicators in individuals with CAI.Methods:Thirty-two women and twenty-nine men with unilateral CAI took part. Hip abductor strength and functional performance were respectively assessed using a hand-held dynamometer and the figure-8-hop test. All 61 participants scored the Cumberland Ankle Instability Tool (CAIT) for self-reported ankle instability.Results: Normalized hip abductor strength and functional performance measures for females were lower than for males. The self-reported ankle instability CAIT score, where higher values represent less instability, was significantly and positively correlated with normalized hip abductor strength and functional performance on the affected side in females (all p < 0.01), but not in males (all p > 0.19).Conclusions: Sex differences were observed in the relationships of normalized hip abductor strength and functional performance to CAIT scores from the CAI, holding for females but not males, and suggesting that evaluation and rehabilitation strategies should be sex-specific.

2021 ◽  
Vol 12 ◽  
Author(s):  
Marcel Bahia Lanza ◽  
Kelly Rock ◽  
Victoria Marchese ◽  
Odessa Addison ◽  
Vicki L. Gray

Understanding the physiological variables that contribute to a functional task provides important information for trainers and clinicians to improve functional performance. The hip abductors and adductors muscles appear to be important in determining the performance of some functional tasks; however, little is known about the relationship of the hip abductor/adductors muscle strength, activation, and size with functional performance. This study aimed to investigate the relationship of maximum torque, rate of torque development (RTD), rate of activation (RoA), and muscle thickness of the hip abductors [tensor fascia latae (TFL) and gluteus medius (GM)] and adductor magnus muscle with the Four Square Step Test (FSST) and the two-leg hop test in healthy young adults. Twenty participants (five males) attended one testing session that involved ultrasound image acquisition, maximal isometric voluntary contractions (hip abduction and hip adduction) while surface electromyography (EMG) was recorded, and two functional tests (FSST and two-leg side hop test). Bivariate correlations were performed between maximum voluntary torque (MVT), RTD at 50, 100, 200, and 300ms, RoA at 0–50, 0–100, 0–200, and 0–300, and muscle thickness with the dynamic stability tests. For the hip abduction, MVT (r=−0.455, p=0.044) and RTD300 (r=−0.494, p=0.027) was correlated with the FSST. GM RoA50 (r=−0.481, p=0.032) and RoA100 (r=−0.459, p=0.042) were significantly correlated with the two-leg side hop test. For the hip adduction, there was a significant correlation between the FSST and RTD300 (r=−0.500, p=0.025), while the two-leg side hop test was correlated with RTD200 (r=0.446, p=0.049) and RTD300 (r=0.594, p=0.006). Overall, the ability of the hip abductor and adductor muscles to produce torque quickly, GM rapid activation, and hip abductor MVT is important for better performance on the FSST and two-leg hop tests. However, muscle size appears not to influence the same tests.


2021 ◽  
Vol 29 (3) ◽  
pp. 230949902110520
Author(s):  
Seung-Myung Choi ◽  
Byung-Ki Cho ◽  
Woo-Sung Park ◽  
Kyung-Jei Woo

Purpose: Residual functional ankle instability regardless of the restoration of mechanical stability after the lateral ligament repair or reconstruction can cause recurrent sprain. The purpose of this study was to identify the sequential changes of joint-position sense, peroneal strength, postural control, and functional performance ability after the modified Broström procedure (MBP) for chronic ankle instability. Methods: A total of 46 patients (46 ankles) who underwent the MBP for chronic ankle instability were eligible for this study and were followed up for 1 year postoperatively. The changes of joint-position sense and peroneal strength were periodically evaluated with an isokinetic dynamometer. Postural control ability was evaluated using a one-leg stance test with eyes closed. The functional performance ability examination comprised a one-leg hop test, a six-meter hop test, and a cross three-meter hop test. Results: The error in joint-position sense significantly improved from a mean 4.3° to 2.8° ( p < 0.001). Peak torque for eversion significantly improved from a mean 18.2 Nm to 21.2 Nm ( p = 0.024). Balance retention time significantly improved from a mean 4.7 s to 6.4 s ( p < 0.001). Among the functional performance tests, only the one-leg hop test showed a significant improvement postoperatively ( p = 0.031). At 1 year postoperatively, the recovery ratios compared to the unaffected ankle were 67.9% in joint-position sense ( p < 0.001), 86.9% in peroneal strength ( p = 0.012), and 74.4% in postural control ( p < 0.001), with significant side-to-side differences. Conclusion: Although joint-position sense, peroneal strength, postural control, and functional performance ability were significantly improved after the MBP, recovery ratios compared to the unaffected ankle were insufficient up to 1 year postoperatively. Level of Evidence: Level IV (prospective case series)


2020 ◽  
Vol 29 (1) ◽  
pp. 51-64
Author(s):  
Anis Rostami ◽  
Amir Letafatkar ◽  
Alli Gokeler ◽  
Mehdi Khaleghi Tazji

Context: Female volleyball players are more predisposed to anterior cruciate ligament injury in comparison with their male counterparts. Recent research on anterior cruciate ligament injury prevention strategies has shown the positive results of adopting the external focus (EF) of attention in sports. Objective: To determine the effect of 6-week EF instruction exercises on performance and kinetic factors associated with lower-extremity injury in landing after the volleyball blocks of female athletes. Design: Pretest and posttest control study. Setting: University research laboratory. Participants: Thirty-two female volleyball players (18–24 y old) from the same team randomly divided into experimental (n = 16) and control (n = 16) groups. Intervention: The experimental group performed a 6-week exercise program with EF instructions. The control group continued its regular volleyball team schedule. Main Outcome Measures: To assess function, single-leg triple hop test for distance was used. A force plate was used to evaluate kinetic variables including vertical ground reaction forces, the rate of loading, and dynamic postural stability index. All data were assessed at baseline and after the intervention. Results: There was a significant increase in single-leg triple hop test (P < .05) and in the first and second peak ground reaction force, rate of loadings, dynamic postural stability index (P < .05). Conclusion: According to the results of this study, anterior cruciate ligament injury prevention programs should incorporate EF instruction exercises to enhance the kinetics and to increase athletes’ functional performance.


2020 ◽  
pp. 1-8
Author(s):  
Cameron Bolton ◽  
Sheri Hale ◽  
Todd Telemeco

Context: Manual therapy (MT) is reported to increase range of motion (ROM), improve balance, and decrease pain in individuals with chronic ankle instability (CAI). Additional literature is needed to examine the effectiveness of the addition of MT to a therapeutic exercise regimen in individuals with CAI. Objective: To examine the combined effects of thrust joint manipulation (TJM) and exercise on function in participants reporting CAI. Design: Randomized controlled trial. Setting: Research laboratory. Participants: A convenience sample of 30 participants (mean age 23.7 [3.65] y; mean height 169.50 [9.50] cm; mean mass 66.48 [10.64] kg). Intervention: Participants were randomly allocated to the exercise (n = 15) or exercise + TJM group (n = 20) and completed an exercise program. The exercise + TJM group also received MT at the talocrural, proximal, and distal tibiofibular joints in the first 3 sessions. Main Outcome Measures: Self-reported outcomes were recorded at baseline and follow-up using the Foot and Ankle Ability Measure (FAAM), the FAAM-Sport (FAAM-S) subscale, and the Ankle Joint Functional Assessment Tool (AJFAT). The side-hop test, figure-of-8 hop test, 3 directions of the Star Excursion Balance Test, and dorsiflexion ROM were also assessed at baseline and follow-up. Results: Only the exercise + TJM group demonstrated an improvement in weight-bearing dorsiflexion with the knee flexed following treatment (P = .02). For all outcome measures, except ROM, subjects improved significantly at follow-up regardless of group assignment (P ≤ .01). Conclusions: Our data suggest that rehabilitation of patients with CAI is related to improved ROM, function, and self-reported outcomes. This provides evidence that the addition of MT to exercise may enhance improvements in ROM as compared with exercise alone. Additional research is needed to identify optimal parameters to maximize therapeutic benefit.


Neurology ◽  
2021 ◽  
Vol 98 (1 Supplement 1) ◽  
pp. S21.2-S22
Author(s):  
Ryan Moran

ObjectiveTo examine the relationship between the m-CTSIB and Landing Error Scoring System in a sample of collegiate female athletes.BackgroundRecent literature has linked concussion and neuromuscular deficits in the lower extremity after injury. Neuromuscular control is frequently assessed using balance measures for concussion, but also dynamically to identify anterior cruciate ligament injury (ACL) risk via jump-landing movement screening.Design/MethodsThirty-nine healthy, collegiate female soccer (n = 22) and volleyball (n = 17) athletes completed the modified-Clinical Test of Sensory Interaction of Balance (m-CTSIB) and the Landing Error Scoring System (LESS). Measures consisted of total m-CTSIB sway index scores on individual conditions (firm surface eyes open [condition 1] and eyes closed [2], foam surface eyes open [3] and eyes closed [4]), m-CTSIB overall score, and total LESS errors. LESS scores were also categorized into a low (0–4 errors) and high (5 + errors) risk to determine if athletes with worse neuromuscular control on the LESS has worse balance on the m-CTSIB. A Spearman's rank-order correlation was conducted to determine the strength of the relationship between LESS and m-CTSIB performance. A series of Mann-Whitney U test were performed to determine differences between low and high LESS performance on m-CTSIB performance.ResultsThere was a weak, negative correlation between LESS and m-CTSIB performance (rs(37) = −0.153, p = 0.35). Further, there were no differences between the low and high risk LESS groups on sway index scores on conditions 1 (U = 158.5, p = 0.39), 2 (U = 156.0, p = 0.36), 3 (U = 165.5, p = 0.51), or 4 (U = 128.5, p = 0.08), as well as overall m-CTSIB scores (U = 150.5, p = 0.28).ConclusionsThere appears to be a lack of relationship between the LESS and m-CTSIB tests, revealing the independence of static and dynamic lower extremity neuromuscular function. Athletes who may be more at risk for ACL injury due to abnormal jump-landing biomechanics, do not differ from low-risk athletes on baseline balance assessment.


2015 ◽  
Vol 50 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Emily A. Hall ◽  
Carrie L. Docherty ◽  
Janet Simon ◽  
Jackie J. Kingma ◽  
Joanne C. Klossner

Context: Although lateral ankle sprains are common in athletes and can lead to chronic ankle instability (CAI), strength-training rehabilitation protocols may improve the deficits often associated with CAI. Objective: To determine whether strength-training protocols affect strength, dynamic balance, functional performance, and perceived instability in individuals with CAI. Design: Randomized controlled trial. Setting: Athletic training research laboratory. Patients or Other Participants: A total of 39 individuals with CAI (17 men [44%], 22 women [56%]) participated in this study. Chronic ankle instability was determined by the Identification of Functional Ankle Instability Questionnaire, and participants were randomly assigned to a resistance-band–protocol group (n = 13 [33%] age = 19.7 ± 2.2 years, height = 172.9 ± 12.8 cm, weight = 69.1 ± 13.5 kg), a proprioceptive neuromuscular facilitation strength-protocol group (n = 13 [33%], age = 18.9 ± 1.3 years, height = 172.5 ± 5.9 cm, weight = 72.7 ± 14.6 kg), or a control group (n = 13 [33%], age = 20.5 ± 2.1 years, height = 175.2 ± 8.1 cm, weight = 70.2 ± 11.1 kg). Intervention(s): Both rehabilitation groups completed their protocols 3 times/wk for 6 weeks. The control group did not attend rehabilitation sessions. Main Outcome Measure(s): Before the interventions, participants were pretested by completing the figure-8 hop test for time, the triple-crossover hop test for distance, isometric strength tests (dorsiflexion, plantar flexion, inversion, and eversion), the Y-Balance test, and the visual analog scale for perceived ankle instability. Participants were again tested 6 weeks later. We conducted 2 separate, multivariate, repeated-measures analyses of variance, followed by univariate analyses on any significant findings. Results: The resistance-band protocol group improved in strength (dorsiflexion, inversion, and eversion) and on the visual analog scale (P &lt; .05); the proprioceptive neuromuscular facilitation group improved in strength (inversion and eversion) and on the visual analog scale (P &lt; .05) as well. No improvements were seen in the triple-crossover hop or the Y-Balance tests for either intervention group or in the control group for any dependent variable (P &gt; .05). Conclusions: Although the resistance-band protocol is common in rehabilitation, the proprioceptive neuromuscular facilitation strength protocol is also an effective treatment to improve strength in individuals with CAI. Both protocols showed clinical benefits in strength and perceived instability. To improve functional outcomes, clinicians should consider using additional multiplanar and multijoint exercises.


Sign in / Sign up

Export Citation Format

Share Document