scholarly journals Near unity Raman β-factor of surface enhanced Raman scattering in a waveguide

Author(s):  
Ming Fu ◽  
Mónica Mota ◽  
Xiaofei Xiao ◽  
Andrea Jacassi ◽  
Yi Li ◽  
...  

Abstract The Raman scattering of light by molecular vibrations offers a powerful technique to ‘fingerprint’ molecules via their internal bonds and symmetries. Since Raman scattering is weak1, methods to enhance, direct and harness it are highly desirable, e.g. through the use of optical cavities2, waveguides3–6, and surface enhanced Raman scattering (SERS)7–9. While SERS offers dramatic enhancements6,15,22,2 by localizing light within vanishingly small ‘hot-spots’ in metallic nanostructures, these tiny interaction volumes are only sensitive to few molecules, yielding weak signals that are difficult to detect10 . Here, we show that SERS from 4-Aminothiophenol (4-ATP) molecules bonded to a plasmonic gap waveguide is directed into a single mode with > 99% efficiency. Although sacrificing a confinement dimension, we find > 104 times SERS enhancement across a broad spectral range enabled by the waveguide’s larger sensing volume and non-resonant mode. Remarkably, the waveguide-SERS (W-SERS) is bright enough to image Raman transport across the waveguides exposing the roles of nanofocusing11–13 and the Purcell effect14. Emulating the e-factor from laser physics15–17, the near unity Raman -factor observed exposes the SERS technique in a new light and points to alternative routes to controlling Raman scattering. The ability of W-SERS to direct Raman scattering is relevant to Raman sensors based on integrated photonics7–9 with applications in gas and bio-sensing as well as healthcare.

The Analyst ◽  
2020 ◽  
Vol 145 (23) ◽  
pp. 7662-7672
Author(s):  
Thakshila Liyanage ◽  
Adrianna N. Masterson ◽  
Sumon Hati ◽  
Greta Ren ◽  
Nicholas E. Manicke ◽  
...  

Nanoplasmonic superlattice surface-enhanced Raman scattering substrates have been developed for an ultrasensitive detection of fentanyl and cocaine from patients’ plasma.


Nanoscale ◽  
2018 ◽  
Vol 10 (29) ◽  
pp. 14220-14229 ◽  
Author(s):  
Weidong Zhao ◽  
Shuyuan Xiao ◽  
Yuxian Zhang ◽  
Dong Pan ◽  
Jiahui Wen ◽  
...  

The BISA with high-density hot spots as reproducible SERS substrates by combining an opal structure with self-assembled monolayer AuNPs is demonstrated.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1046 ◽  
Author(s):  
Taeksu Lee ◽  
Sanghee Jung ◽  
Soongeun Kwon ◽  
Woochang Kim ◽  
Jinsung Park ◽  
...  

To achieve an effective surface-enhanced Raman scattering (SERS) sensor with periodically distributed “hot spots” on wafer-scale substrates, we propose a hybrid approach combining physical nano-imprint lithography and a chemical deposition method to form a silver microbead array. Nano-imprint lithography (NIL) can lead to mass-production and high throughput, but is not appropriate for generating strong “hot-spots.” However, when we apply electrochemical deposition to an NIL substrate and the reaction time was increased to 45 s, periodical “hot-spots” between the microbeads were generated on the substrates. It contributed to increasing the enhancement factor (EF) and lowering the detection limit of the substrates to 4.40 × 106 and 1.0 × 10−11 M, respectively. In addition, this synthetic method exhibited good substrate-to-substrate reproducibility (RSD < 9.4%). Our research suggests a new opportunity for expanding the SERS application.


Sign in / Sign up

Export Citation Format

Share Document