scholarly journals A Highly Fluorescent Pyrene-based Sensor for Selective Detection of Fe3+ Ion in Aqueous Medium: DFT and Molecular Docking Studies

Author(s):  
Puthiyavalappil Rasin ◽  
Merlin Mary Mathew ◽  
Vipin Manakkadan ◽  
Vishnunarayanan Namboothiri Vadakkedathu Palakkeezhillam ◽  
Sreekanth Anandaram

Abstract In this work, we introduce a highly selective and sensitive fluorescent sensor based on pyrene derivative for Fe(III) ion sensing in DMSO/water media. 2-(pyrene-2-yl)-1-(pyrene-2-ylmethyl)-1H-benzo[d]imidazole (PEBD) receptor was synthesized via simple condensation reaction and confirmed by spectroscopic techniques. The receptor exhibits fluorescence quenching in the presence of Fe(III) ions at 440 nm. ESI-MS and Job’s method were used to confirm the 1:1 molar binding ratio of the receptor PEBD to Fe(III) ions. Using the Benesi-Hildebrand equation the binding constant value was determined as 8.485×103 M-1. Furthermore, the limit of detection (LOD, 3σ/K) value was found to be 1.81µM in DMSO/water (95/5, v/v) media. According to the Environmental Protection Agency (EPA) of the United States, it is lower than the acceptable value of Fe3+ in drinking water (0.3 mg/L). The presence of 14 other metal ions such Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Pb2+, K+, Ni2+, Mg2+, Cd2+, Ca2+, Mn2+, Al3+, and Zn2+ did not interfere with the detection of Fe(III) ions. Computational studies of the receptor PEBD were carried out with density functional theory (DFT) using B3LYP/ 6-311G (d, p), LANL2DZ level of theory. Finally, molecular docking studies have been performed to investigate the Cytochrome P450 1A1(CYP1A1) protein inhibitory action of the receptor PEBD.

2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 666 ◽  
Author(s):  
Najeeb Ur Rehman ◽  
Kashif Rafiq ◽  
Ajmal Khan ◽  
Sobia Ahsan Halim ◽  
Liaqat Ali ◽  
...  

Bioassay guided isolation of the methanolic extract of marine macro brown alga Dictyopteris hoytii afforded one new metabolite (ethyl methyl 2-bromobenzene 1,4-dioate, 1), one new natural metabolite (diethyl-2-bromobenzene 1,4-dioate, 2) along with six known metabolites (3–8) reported for the first time from this source. The structure elucidation of all these compounds was achieved by extensive spectroscopic techniques including 1D (1H and 13C) and 2D (NOESY, COSY, HMBC and HSQC) NMR and mass spectrometry and comparison of the spectral data of known compounds with those reported in literature. The in vitro α-glucosidase inhibition studies confirmed compound 7 to be the most active against α-glucosidase enzyme with IC50 value of 30.5 ± 0.41 μM. Compounds 2 and 3 demonstrated good inhibition with IC50 values of 234.2 ± 4.18 and 289.4 ± 4.91 μM, respectively, while compounds 1, 5, and 6 showed moderate to low inhibition. Furthermore, the molecular docking studies of the active compounds were performed to examine their mode of inhibition in the binding site of the α-glucosidase enzyme.


Sign in / Sign up

Export Citation Format

Share Document