scholarly journals An Optimizing Method for Performance and ResourceUtilization in Quantum Machine Learning Circuits

Author(s):  
Tahereh Salehi ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Mina Abbaszade ◽  
Vahid Salari

Abstract Quantum computing is a new and advanced topic that refers to calculations based on the principles of quantum mechanics. Itmakes certain kinds of problems be solved easier compared to classical computers. This advantage of quantum computingcan be used to implement many existing problems in different fields incredibly effectively. One important field that quantumcomputing has shown great results in machine learning. Until now, many different quantum algorithms have been presented toperform different machine learning approaches. In some special cases, the execution time of these quantum algorithms will bereduced exponentially compared to the classical ones. But at the same time, with increasing data volume and computationtime, taking care of systems to prevent unwanted interactions with the environment can be a daunting task and since thesealgorithms work on machine learning problems, which usually includes big data, their implementation is very costly in terms ofquantum resources. Here, in this paper, we have proposed an approach to reduce the cost of quantum circuits and to optimizequantum machine learning circuits in particular. To reduce the number of resources used, in this paper an approach includingdifferent optimization algorithms is considered. Our approach is used to optimize quantum machine learning algorithms forbig data. In this case, the optimized circuits run quantum machine learning algorithms in less time than the original onesand by preserving the original functionality. Our approach improves the number of quantum gates by 10.7% and 14.9% indifferent circuits and the number of time steps is reduced by three and 15 units, respectively. This is the amount of reduction forone iteration of a given sub-circuit U in the main circuit. For cases where this sub-circuit is repeated more times in the maincircuit, the optimization rate is increased. Therefore, by applying the proposed method to circuits with big data, both cost andperformance are improved.

Author(s):  
Supriya M. S. ◽  
Keerthana Sasidaran

Big data and machine learning currently play an important role in various applications and in research. These approaches are explored in depth in this chapter. The chapter starts with a summary of big data and its implementation in a number of fields, and then deals with the problems that big data presents and the need for other technology to resolve these issues/challenges. Big data can best be used with the aid of the machine learning model, even though they are not directly related. Thus, the paradigms of machine learning that support big data can be combined with big data technology, thus providing insight into a range of big data machine learning approaches and techniques. Although big data cannot rely solely on the few paradigms of machine learning, the underlying problems are addressed. New machine learning algorithms are needed that can explore the full scale of the big data process and enable software engineering firms to come up with better solutions.


Author(s):  
Magdalena Kukla-Bartoszek ◽  
Paweł Teisseyre ◽  
Ewelina Pośpiech ◽  
Joanna Karłowska-Pik ◽  
Piotr Zieliński ◽  
...  

AbstractIncreasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.


2017 ◽  
Vol 47 (10) ◽  
pp. 2625-2626 ◽  
Author(s):  
Fuchun Sun ◽  
Guang-Bin Huang ◽  
Q. M. Jonathan Wu ◽  
Shiji Song ◽  
Donald C. Wunsch II

Author(s):  
C.S.R. Prabhu ◽  
Aneesh Sreevallabh Chivukula ◽  
Aditya Mogadala ◽  
Rohit Ghosh ◽  
L.M. Jenila Livingston

Author(s):  
Manjunath Thimmasandra Narayanapppa ◽  
T. P. Puneeth Kumar ◽  
Ravindra S. Hegadi

Recent technological advancements have led to generation of huge volume of data from distinctive domains (scientific sensors, health care, user-generated data, finical companies and internet and supply chain systems) over the past decade. To capture the meaning of this emerging trend the term big data was coined. In addition to its huge volume, big data also exhibits several unique characteristics as compared with traditional data. For instance, big data is generally unstructured and require more real-time analysis. This development calls for new system platforms for data acquisition, storage, transmission and large-scale data processing mechanisms. In recent years analytics industries interest expanding towards the big data analytics to uncover potentials concealed in big data, such as hidden patterns or unknown correlations. The main goal of this chapter is to explore the importance of machine learning algorithms and computational environment including hardware and software that is required to perform analytics on big data.


Author(s):  
Qifang Bi ◽  
Katherine E Goodman ◽  
Joshua Kaminsky ◽  
Justin Lessler

Abstract Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on “Big Data,” it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.


Sign in / Sign up

Export Citation Format

Share Document