scholarly journals Searching for improvements in predicting human eye colour from DNA

Author(s):  
Magdalena Kukla-Bartoszek ◽  
Paweł Teisseyre ◽  
Ewelina Pośpiech ◽  
Joanna Karłowska-Pik ◽  
Piotr Zieliński ◽  
...  

AbstractIncreasing understanding of human genome variability allows for better use of the predictive potential of DNA. An obvious direct application is the prediction of the physical phenotypes. Significant success has been achieved, especially in predicting pigmentation characteristics, but the inference of some phenotypes is still challenging. In search of further improvements in predicting human eye colour, we conducted whole-exome (enriched in regulome) sequencing of 150 Polish samples to discover new markers. For this, we adopted quantitative characterization of eye colour phenotypes using high-resolution photographic images of the iris in combination with DIAT software analysis. An independent set of 849 samples was used for subsequent predictive modelling. Newly identified candidates and 114 additional literature-based selected SNPs, previously associated with pigmentation, and advanced machine learning algorithms were used. Whole-exome sequencing analysis found 27 previously unreported candidate SNP markers for eye colour. The highest overall prediction accuracies were achieved with LASSO-regularized and BIC-based selected regression models. A new candidate variant, rs2253104, located in the ARFIP2 gene and identified with the HyperLasso method, revealed predictive potential and was included in the best-performing regression models. Advanced machine learning approaches showed a significant increase in sensitivity of intermediate eye colour prediction (up to 39%) compared to 0% obtained for the original IrisPlex model. We identified a new potential predictor of eye colour and evaluated several widely used advanced machine learning algorithms in predictive analysis of this trait. Our results provide useful hints for developing future predictive models for eye colour in forensic and anthropological studies.

Author(s):  
Gowri Prasad ◽  
Vrinda Raveendran ◽  
Vidya B M ◽  
Tejavati Hedge

Diabetic retinopathy is a eye disorder which is developed due to high blood sugar that affects the neurons in retina. A dangerous fact about this disease is that it can lead to blindness. The possible cure is through detection of disease at early age. This can be done using different machine learning algorithms. This paper does a comparative study on different machine learning algorithms that can be used for early detection of diabetic retinopathy. This study is done to find out the most efficient algorithm suitable for the process and to increase the efficiency of the particular algorithm.


2013 ◽  
Vol 108 (11) ◽  
pp. 1723-1730 ◽  
Author(s):  
Amit G Singal ◽  
Ashin Mukherjee ◽  
Joseph B Elmunzer ◽  
Peter D R Higgins ◽  
Anna S Lok ◽  
...  

2019 ◽  
Vol 27 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Qiang Wei ◽  
Zongcheng Ji ◽  
Zhiheng Li ◽  
Jingcheng Du ◽  
Jingqi Wang ◽  
...  

AbstractObjectiveThis article presents our approaches to extraction of medications and associated adverse drug events (ADEs) from clinical documents, which is the second track of the 2018 National NLP Clinical Challenges (n2c2) shared task.Materials and MethodsThe clinical corpus used in this study was from the MIMIC-III database and the organizers annotated 303 documents for training and 202 for testing. Our system consists of 2 components: a named entity recognition (NER) and a relation classification (RC) component. For each component, we implemented deep learning-based approaches (eg, BI-LSTM-CRF) and compared them with traditional machine learning approaches, namely, conditional random fields for NER and support vector machines for RC, respectively. In addition, we developed a deep learning-based joint model that recognizes ADEs and their relations to medications in 1 step using a sequence labeling approach. To further improve the performance, we also investigated different ensemble approaches to generating optimal performance by combining outputs from multiple approaches.ResultsOur best-performing systems achieved F1 scores of 93.45% for NER, 96.30% for RC, and 89.05% for end-to-end evaluation, which ranked #2, #1, and #1 among all participants, respectively. Additional evaluations show that the deep learning-based approaches did outperform traditional machine learning algorithms in both NER and RC. The joint model that simultaneously recognizes ADEs and their relations to medications also achieved the best performance on RC, indicating its promise for relation extraction.ConclusionIn this study, we developed deep learning approaches for extracting medications and their attributes such as ADEs, and demonstrated its superior performance compared with traditional machine learning algorithms, indicating its uses in broader NER and RC tasks in the medical domain.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6345
Author(s):  
Floriant Labarrière ◽  
Elizabeth Thomas ◽  
Laurine Calistri ◽  
Virgil Optasanu ◽  
Mathieu Gueugnon ◽  
...  

Locomotion assistive devices equipped with a microprocessor can potentially automatically adapt their behavior when the user is transitioning from one locomotion mode to another. Many developments in the field have come from machine learning driven controllers on locomotion assistive devices that recognize/predict the current locomotion mode or the upcoming one. This review synthesizes the machine learning algorithms designed to recognize or to predict a locomotion mode in order to automatically adapt the behavior of a locomotion assistive device. A systematic review was conducted on the Web of Science and MEDLINE databases (as well as in the retrieved papers) to identify articles published between 1 January 2000 to 31 July 2020. This systematic review is reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and is registered on Prospero (CRD42020149352). Study characteristics, sensors and algorithms used, accuracy and robustness were also summarized. In total, 1343 records were identified and 58 studies were included in this review. The experimental condition which was most often investigated was level ground walking along with stair and ramp ascent/descent activities. The machine learning algorithms implemented in the included studies reached global mean accuracies of around 90%. However, the robustness of those algorithms seems to be more broadly evaluated, notably, in everyday life. We also propose some guidelines for homogenizing future reports.


2020 ◽  
Vol 11 ◽  
Author(s):  
Shakiru A. Alaka ◽  
Bijoy K. Menon ◽  
Anita Brobbey ◽  
Tyler Williamson ◽  
Mayank Goyal ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Omer F. Akmese ◽  
Gul Dogan ◽  
Hakan Kor ◽  
Hasan Erbay ◽  
Emre Demir

Acute appendicitis is one of the most common emergency diseases in general surgery clinics. It is more common, especially between the ages of 10 and 30 years. Additionally, approximately 7% of the entire population is diagnosed with acute appendicitis at some time in their lives and requires surgery. The study aims to develop an easy, fast, and accurate estimation method for early acute appendicitis diagnosis using machine learning algorithms. Retrospective clinical records were analyzed with predictive data mining models. The predictive success of the models obtained by various machine learning algorithms was compared. A total of 595 clinical records were used in the study, including 348 males (58.49%) and 247 females (41.51%). It was found that the gradient boosted trees algorithm achieves the best success with an accurate prediction success of 95.31%. In this study, an estimation method based on machine learning was developed to identify individuals with acute appendicitis. It is thought that this method will benefit patients with signs of appendicitis, especially in emergency departments in hospitals.


2020 ◽  
Vol 9 (1) ◽  
pp. 1894-1899 ◽  

The number of internet users has increased exponentially over the years and so have increased intrusive activities significantly. To detect an intrusion attack in a system connected over a network is one of the most challenging tasks in today’s world. A significant number of techniques have been developed which are based on machine learning approaches to detect these intrusion attacks. Even though these techniques are good, they are not good enough to detect all kinds of attacks. In this paper, the analysis of different machine learning algorithm will be performed on the NSL-KDD dataset with pre-processing steps like One-hot encoding, feature selection and random sampling to use in different machine learning models to find the best performing model to detect these attacks. The attacks are from the datasets are classified into four types of attacks: Probe, DoS, U2R, R2L while the non- attack is the Normal. The dataset is in two parts: KDD-Train and KDD-Test. The dataset is trained and tested to find accuracy and understand the performance of different machine learning algorithms and compare them. The Machine Learning algorithms used are Naive Bayes Classifier, Decision Tree Classifier, Random Forest Classifier, KNeighbours Classifier, Logistic Regression, SVM Classifier, Voting Classifier. These techniques are compared according to their capability to detect the attacks. This comparison will help to find the algorithm which would work the best to detect different kinds of intrusion attacks.


2021 ◽  
Vol 28 ◽  
Author(s):  
Annamaria Landolfi ◽  
Carlo Ricciardi ◽  
Leandro Donisi ◽  
Giuseppe Cesarelli ◽  
Jacopo Troisi ◽  
...  

Background:: Parkinson’s disease is the second most frequent neurodegenerative disorder. Its diagnosis is challenging and mainly relies on clinical aspects. At present, no biomarker is available to obtain a diagnosis of certainty in vivo. Objective:: The present review aims at describing machine learning algorithms as they have been variably applied to different aspects of Parkinson’s disease diagnosis and characterization. Methods:: A systematic search was conducted on PubMed in December 2019, resulting in 230 publications obtained with the following search query: “Machine Learning” “AND” “Parkinson Disease”. Results:: the obtained publications were divided into 6 categories, based on different application fields: “Gait Analysis - Motor Evaluation”, “Upper Limb Motor and Tremor Evaluation”, “Handwriting and typing evaluation”, “Speech and Phonation evaluation”, “Neuroimaging and Nuclear Medicine evaluation”, “Metabolomics application”, after excluding the papers of general topic. As a result, a total of 166 articles were analyzed, after elimination of papers written in languages other than English or not directly related to the selected topics. Conclusion:: Machine learning algorithms are computer-based statistical approaches which can be trained and are able to find common patterns from big amounts of data. The machine learning approaches can help clinicians in classifying patients according to several variables at the same time.


2021 ◽  
pp. 219256822097983
Author(s):  
Qiyi Li ◽  
Haoyan Zhong ◽  
Federico P. Girardi ◽  
Jashvant Poeran ◽  
Lauren A. Wilson ◽  
...  

Study Design: retrospective cohort study. Objectives: To test and compare 2 machine learning algorithms to define characteristics associated with candidates for ambulatory same day laminectomy surgery. Methods: The American College of Surgeons National Surgical Quality Improvement Program database was queried for patients who underwent single level laminectomy in 2017 and 2018. The main outcome was ambulatory same day discharge. Study variables of interest included demographic information, comorbidities, preoperative laboratory values, and intra-operative information. Two machine learning predictive modeling algorithms, artificial neural network (ANN) and random forest, were trained to predict same day discharge. The quality of models was evaluated with area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) measures. Results: Among 35,644 patients, 13,230 (37.1%) were discharged on the day of surgery. Both ANN and RF demonstrated a satisfactory model quality in terms of AUC (0.77 and 0.77), accuracy (0.69 and 0.70), sensitivity (0.83 and 0.58), specificity (0.55 and 0.80), PPV (0.77 and 0.69), and NPV (0.64 and 0.70). Both models highlighted several important predictive variables, including age, duration of operation, body mass index and preoperative laboratory values including, hematocrit, platelets, white blood cells, and alkaline phosphatase. Conclusion: Machine learning approaches provide a promising tool to identify candidates for ambulatory laminectomy surgery. Both machine learning algorithms highlighted the as yet unrecognized importance of preoperative laboratory testing on patient pathway design.


Sign in / Sign up

Export Citation Format

Share Document