An Introduction to Quantum Machine Learning Algorithms

Author(s):  
Rongji Li ◽  
Juan Xu ◽  
Jiabin Yuan ◽  
Dan Li
Author(s):  
Kushal Batra ◽  
Kimberley M. Zorn ◽  
Daniel H. Foil ◽  
Eni Minerali ◽  
Victor O. Gawriljuk ◽  
...  

Author(s):  
Ji Guan ◽  
Wang Fang ◽  
Mingsheng Ying

AbstractSeveral important models of machine learning algorithms have been successfully generalized to the quantum world, with potential speedup to training classical classifiers and applications to data analytics in quantum physics that can be implemented on the near future quantum computers. However, quantum noise is a major obstacle to the practical implementation of quantum machine learning. In this work, we define a formal framework for the robustness verification and analysis of quantum machine learning algorithms against noises. A robust bound is derived and an algorithm is developed to check whether or not a quantum machine learning algorithm is robust with respect to quantum training data. In particular, this algorithm can find adversarial examples during checking. Our approach is implemented on Google’s TensorFlow Quantum and can verify the robustness of quantum machine learning algorithms with respect to a small disturbance of noises, derived from the surrounding environment. The effectiveness of our robust bound and algorithm is confirmed by the experimental results, including quantum bits classification as the “Hello World” example, quantum phase recognition and cluster excitation detection from real world intractable physical problems, and the classification of MNIST from the classical world.


2022 ◽  
Author(s):  
Tahereh Salehi ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Mina Abbaszade ◽  
Vahid Salari

Abstract Quantum computing is a new and advanced topic that refers to calculations based on the principles of quantum mechanics. Itmakes certain kinds of problems be solved easier compared to classical computers. This advantage of quantum computingcan be used to implement many existing problems in different fields incredibly effectively. One important field that quantumcomputing has shown great results in machine learning. Until now, many different quantum algorithms have been presented toperform different machine learning approaches. In some special cases, the execution time of these quantum algorithms will bereduced exponentially compared to the classical ones. But at the same time, with increasing data volume and computationtime, taking care of systems to prevent unwanted interactions with the environment can be a daunting task and since thesealgorithms work on machine learning problems, which usually includes big data, their implementation is very costly in terms ofquantum resources. Here, in this paper, we have proposed an approach to reduce the cost of quantum circuits and to optimizequantum machine learning circuits in particular. To reduce the number of resources used, in this paper an approach includingdifferent optimization algorithms is considered. Our approach is used to optimize quantum machine learning algorithms forbig data. In this case, the optimized circuits run quantum machine learning algorithms in less time than the original onesand by preserving the original functionality. Our approach improves the number of quantum gates by 10.7% and 14.9% indifferent circuits and the number of time steps is reduced by three and 15 units, respectively. This is the amount of reduction forone iteration of a given sub-circuit U in the main circuit. For cases where this sub-circuit is repeated more times in the maincircuit, the optimization rate is increased. Therefore, by applying the proposed method to circuits with big data, both cost andperformance are improved.


2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Lin Lin ◽  
Xiufang Liang

The online English teaching system has certain requirements for the intelligent scoring system, and the most difficult stage of intelligent scoring in the English test is to score the English composition through the intelligent model. In order to improve the intelligence of English composition scoring, based on machine learning algorithms, this study combines intelligent image recognition technology to improve machine learning algorithms, and proposes an improved MSER-based character candidate region extraction algorithm and a convolutional neural network-based pseudo-character region filtering algorithm. In addition, in order to verify whether the algorithm model proposed in this paper meets the requirements of the group text, that is, to verify the feasibility of the algorithm, the performance of the model proposed in this study is analyzed through design experiments. Moreover, the basic conditions for composition scoring are input into the model as a constraint model. The research results show that the algorithm proposed in this paper has a certain practical effect, and it can be applied to the English assessment system and the online assessment system of the homework evaluation system algorithm system.


2019 ◽  
Vol 1 (2) ◽  
pp. 78-80
Author(s):  
Eric Holloway

Detecting some patterns is a simple task for humans, but nearly impossible for current machine learning algorithms.  Here, the "checkerboard" pattern is examined, where human prediction nears 100% and machine prediction drops significantly below 50%.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1290-P
Author(s):  
GIUSEPPE D’ANNUNZIO ◽  
ROBERTO BIASSONI ◽  
MARGHERITA SQUILLARIO ◽  
ELISABETTA UGOLOTTI ◽  
ANNALISA BARLA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document