scholarly journals A High Throughput Method to Analyze the Interaction Proteins With p22 Protein of African Swine Fever Virus in Vitro

Author(s):  
Xuejiao Zhu ◽  
Baochao Fan ◽  
Junming Zhou ◽  
Dandan Wang ◽  
Huiying Fan ◽  
...  

Abstract Background: African Swine Fever Virus (ASFV) has been identified as the agent of ASF, which has resulting in a mortality rate of nearly 100% in domestic pigs worldwide. Protein p22 encoded by pKP177L was reported to be localized at the inner envelope of the virus, while the function of p22 remains unclear.Methods: Protein p22 interacted proteins of the host were immune-precipitated and identified by Liquid Chromatography Mass Spectrometry, analyzed by Go terms and KEGG pathways. Results: Numerous cellular proteins in 293-T that interacted with p22 protein were identified. These interacted proteins were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and their interactions. At the same time, the interacted proteins participated in several KEGG pathways like ribosome, splicesome, etc. The key proteins in PPI network were closely related to actin filament organization and movement, resulting in affecting the process of phagocytosis and endocytosis. Conclusions: The identified high number of proteins interacted with p22 and as a large database should be very useful to elucidate the function of p22 in the near future, and lay the foundation for elucidating the mechanism of ASFV.

2021 ◽  
Vol 8 ◽  
Author(s):  
Xuejiao Zhu ◽  
Baochao Fan ◽  
Junming Zhou ◽  
Dandan Wang ◽  
Huiying Fan ◽  
...  

African swine fever virus (ASFV) has been identified as the agent of African swine fever, resulting in a mortality rate of nearly 100% in domestic pigs worldwide. Protein p22 encoded by gene KP177R has been reported to be localized at the inner envelope of the virus, while the function of p22 remains unclear. In this study, p22 interacting proteins of the host were identified by a high-throughput method and analyzed by Gene ontology terms and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways; numerous cellular proteins in 293-T that interacted with p22 protein were identified. These interacting proteins were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc. At the same time, the interacted proteins participated in several KEGG pathways like ribosome, spliceosome, etc. The key proteins in the protein–protein interaction network were closely related to actin filament organization and movement, resulting in affecting the process of phagocytosis and endocytosis. A large number of proteins that interacted with p22 were identified, providing a large database, which should be very useful to elucidate the function of p22 in the near future, laying the foundation for elucidating the mechanism of ASFV.


2021 ◽  
pp. 105081
Author(s):  
Zhao Huang ◽  
Lang Gong ◽  
Zezhong Zheng ◽  
Qi Gao ◽  
Xiongnan Chen ◽  
...  

2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. In this study we investigated the effect of deleting combinations of different genes from a previously attenuated virus, BeninΔDP148R on: virus replication in macrophages, virus persistence and clinical signs post immunization, and induction of protection against challenge. Deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R did not reduce virus replication in vitro. However, deletion of EP402R dramatically reduced viral persistence in vivo, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and a slight increase in virus genome copies in blood was observed at different times post immunization when compared with BeninΔDP148R. These results show that EP402R and EP153R have a synergistic role in promoting viremia, however EP153R alone does not seem to have a major impact on virus levels in blood.


1998 ◽  
Vol 72 (4) ◽  
pp. 2881-2889 ◽  
Author(s):  
M. V. Borca ◽  
C. Carrillo ◽  
L. Zsak ◽  
W. W. Laegreid ◽  
G. F. Kutish ◽  
...  

ABSTRACT An African swine fever virus (ASFV) gene with similarity to the T-lymphocyte surface antigen CD2 has been found in the pathogenic African isolate Malawi Lil-20/1 (open reading frame [ORF] 8-DR) and a cell culture-adapted European virus, BA71V (ORF EP402R) and has been shown to be responsible for the hemadsorption phenomenon observed for ASFV-infected cells. The structural and functional similarities of the ASFV gene product to CD2, a cellular protein involved in cell-cell adhesion and T-cell-mediated immune responses, suggested a possible role for this gene in tissue tropism and/or immune evasion in the swine host. In this study, we constructed an ASFV 8-DR gene deletion mutant (Δ8-DR) and its revertant (8-DR.R) from the Malawi Lil-20/1 isolate to examine gene function in vivo. In vitro, Δ8-DR, 8-DR.R, and the parental virus exhibited indistinguishable growth characteristics on primary porcine macrophage cell cultures. In vivo,8-DR had no obvious effect on viral virulence in domestic pigs; disease onset, disease course, and mortality were similar for the mutant Δ8-DR, its revertant 8-DR.R, and the parental virus. Altered viral infection was, however, observed for pigs infected with Δ8-DR. A delay in spread to and/or replication of Δ8-DR in the draining lymph node, a delay in generalization of infection, and a 100- to 1,000-fold reduction in virus titers in lymphoid tissue and bone marrow were observed. Onset of viremia for Δ8-DR-infected animals was significantly delayed (by 2 to 5 days), and mean viremia titers were reduced approximately 10,000-fold at 5 days postinfection and 30- to 100-fold at later times; moreover, unlike in 8-DR.R-infected animals, the viremia was no longer predominantly erythrocyte associated but rather was equally distributed among erythrocyte, leukocyte, and plasma fractions. Mitogen-dependent lymphocyte proliferation of swine peripheral blood mononuclear cells in vitro was reduced by 90 to 95% following infection with 8-DR.R but remained unaltered following infection with Δ8-DR, suggesting that 8-DR has immunosuppressive activity in vitro. Together, these results suggest an immunosuppressive role for 8-DR in the swine host which facilitates early events in viral infection. This may be of most significance for ASFV infection of its highly adapted natural host, the warthog.


2001 ◽  
Vol 75 (21) ◽  
pp. 10372-10382 ◽  
Author(s):  
Isabelle Vallée ◽  
Stephen W. G. Tait ◽  
Penelope P. Powell

ABSTRACT African swine fever (ASF) is an asymptomatic infection of warthogs and bushpigs, which has become an emergent disease of domestic pigs, characterized by hemorrhage, lymphopenia, and disseminated intravascular coagulation. It is caused by a large icosohedral double-stranded DNA virus, African swine fever virus (ASFV), with infection of macrophages well characterized in vitro and in vivo. This study shows that virulent isolates of ASFV also infect primary cultures of porcine aortic endothelial cells and bushpig endothelial cells (BPECs) in vitro. Kinetics of early and late gene expression, viral factory formation, replication, and secretion were similar in endothelial cells and macrophages. However, ASFV-infected endothelial cells died by apoptosis, detected morphologically by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling and nuclear condensation and biochemically by poly(ADP-ribose) polymerase (PARP) cleavage at 4 h postinfection (hpi). Immediate-early proinflammatory responses were inhibited, characterized by a lack of E-selectin surface expression and interleukin 6 (IL-6) and IL-8 mRNA synthesis. Moreover, ASFV actively downregulated interferon-induced major histocompatibility complex class I surface expression, a strategy by which viruses evade the immune system. Significantly, Western blot analysis showed that the 65-kDa subunit of the transcription factor NF-κB, a central regulator of the early response to viral infection, decreased by 8 hpi and disappeared by 18 hpi. Both disappearance of NF-κB p65 and cleavage of PARP were reversed by the caspase inhibitor z-VAD-fmk. Interestingly, surface expression and mRNA transcription of tissue factor, an important initiator of the coagulation cascade, increased 4 h after ASFV infection. These data suggest a central role for vascular endothelial cells in the hemorrhagic pathogenesis of the disease. Since BPECs infected with ASFV also undergo apoptosis, resistance of the natural host must involve complex pathological factors other than viral tropism.


1999 ◽  
Vol 80 (10) ◽  
pp. 2693-2697 ◽  
Author(s):  
J. G. Neilan ◽  
M. V. Borca ◽  
Z. Lu ◽  
G. F. Kutish ◽  
S. B. Kleiboeker ◽  
...  

An African swine fever virus (ASFV) ORF, 8CR, with similarity to the C-type lectin family of adhesion proteins has been described in the pathogenic isolate Malawi Lil-20/1. The similarity of 8CR to cellular and poxvirus genes associated with cell adhesion, cell recognition and virus infectivity suggested that 8CR may be of significance to ASFV–host cell interactions. Sequence analysis of the 8CR ORF from additional pathogenic ASFV isolates demonstrated conservation among isolates from both pig and tick sources. Northern blot analysis demonstrated 8CR mRNA transcription late in the virus replication cycle. A Malawi Lil-20/1 8CR deletion mutant (Δ8CR) was constructed to analyse 8CR function further. The growth characteristics in vitro of Δ8CR in porcine macrophage cell cultures were identical to those observed for parental virus. In domestic swine, Δ8CR exhibited an unaltered parental Malawi Lil- 20/1 disease and virulence phenotype. Thus, although well conserved among pathogenic ASFV field isolates, 8CR is non-essential for growth in porcine macrophages in vitro and for virus virulence in domestic swine.


2019 ◽  
Vol 238 ◽  
pp. 108424 ◽  
Author(s):  
Tinka Jelsma ◽  
Joris J. Wijnker ◽  
Bregtje Smid ◽  
Eline Verheij ◽  
Wim H.M. van der Poel ◽  
...  

Virology ◽  
1981 ◽  
Vol 113 (2) ◽  
pp. 484-491 ◽  
Author(s):  
María L. Salas ◽  
Juan Kuznar ◽  
Eladio Viñuela

2019 ◽  
pp. 23-28 ◽  
Author(s):  
A. S. Pershin ◽  
I. V. Shevchenko ◽  
A. S. Igolkin ◽  
Ye. V. Aronova ◽  
N. N. Vlasova

A characteristic feature of African swine fever virus (ASFV) is the ability to escape from host immune response, affecting macrophages and replicating in them. Besides, ASFV - specific antibodies do not completely neutralize the virus. Cytokines are important factors for various viral infection pathologies. The virulence of ASFV isolates may depend on the capacity to regulate cytokine expression by macrophages. Thus, when comparing in vitro and in vivo cytokine production by macrophages, it was established that infection with low virulent virus isolates leads to an immune response with a predominance of cytokines involved in cellular immunity, such as INF-α and IL-12p40, as compared with infection with highly virulent isolates. The aim of this paper was to study the effect of African swine fever virus on the production of IL-10, a pleiotropic cytokine that inhibits synthesis of cytokines and shows a strong antiinflammatory effect. For this, 12 piglets were experimentally infected intramuscularly with a continuous cell culture-adapted ASFV isolate Vero25 at a dose of 10 HAdU per animal followed by control infection of surviving animals with the reference virus isolate Arm 07 at a dose of 1,000 HAdU per animal. Temperature measurements were taken and blood sampling to obtain serum was conducted during the experiment. IL-10 amount in blood sera was determined using Invitrogen test systems (Thermo Fisher, USA). A higher IL-10 level (15.8–173 pg/ml) was observed in blood sera of dead animals infected with a moderately virulent virus, as compared with surviving pigs (4–5 pg/ml). No correlation between the speed of appearance of specific antibodies and IL-10 serum levels has been established. No noticeable effect of the IL-10 serum level prior to infection on the survival rate of animals has been observed. Further studies are needed to establish a causal relationship, including study of the expression of various cytokines during infection with both low- and highly virulent virus isolates.


Sign in / Sign up

Export Citation Format

Share Document