scholarly journals Does a One Health Approach to Human African Trypanosomiasis Control Hasten Elimination? A Stochastic Compartmental Modeling Approach

Author(s):  
Julianne Meisner ◽  
Agapitus Kato ◽  
Marshall Lemerani ◽  
Erick Mwamba Miaka ◽  
Acaga Ismail Taban ◽  
...  

Abstract Background: In response to large strides in the control of human African trypanosomiasis (HAT), in the early 2000s the WHO set targets for elimination of both the gambiense (gHAT) and rhodesiense (rHAT) forms as a public health (EPHP) problem by 2020, and elimination of gHAT transmisson (EOT) by 2030. While global EPHP targets have been met, and EOT appears within reach, there is ample evidence that current control strategies will not achieve gHAT EOT in the presence of animal reservoirs, the role of which is currently uncertain. Furthermore, rHAT is not targeted for EOT due to the known importance of animal reservoirs for this form. Methods: To evaluate the utility of a One Health approach to gHAT and rHAT EOT, we built and parameterized a compartmental stochastic model, using the Institute for Disease Modeling's Compartmental Modeling Software, to six HAT epidemics: the national rHAT epidemics in Uganda and Malawi, the national gHAT epidemics in Uganda and South Sudan, and two separate gHAT epidemics in Democratic Republic of Congo distinguished by dominant vector species. In rHAT foci the reservoir animal sub-model was stratified on four species groups, while in gHAT foci domestic swine were assumed to be the only competent reservoir. The modeled time horizon was 2005-2045, with calibration performed using HAT surveillance data from 2000-2004 and Optuna. Interventions included insecticide and trypanocide treatment of domestic animal reservoirs at varying coverage levels. Results: Validation against HAT surveillance data indicates favorable performance overall, with the possible exception of DRC. EOT was not observed in any modeled scenarios for rHAT, however insecticide treatment consistently performed better than trypanocide treatment in terms of rHAT control. EOT was not observed for gHAT at 0% coverage of domestic reservoirs with trypanocides or insecticides, but was observed by 2030 in all test scenarios; again, insecticides demonstrated superior performance to trypanocides. Conclusions: EOT cannot be achieved for rHAT without control of wildlife reservoirs, however insecticide treatment of domestic animals holds promise for improved control. In the presence of domestic animal reservoirs, gHAT EOT will not be achieved under current control strategies.

2019 ◽  
Vol 41 (1) ◽  
pp. 130-144
Author(s):  
Rodrigo Macedo Couto ◽  
Otavio T Ranzani ◽  
Eliseu Alves Waldman

Abstract Zoonotic tuberculosis is a reemerging infectious disease in high-income countries and a neglected one in low- and middle-income countries. Despite major advances in its control as a result of milk pasteurization, its global burden is unknown, especially due the lack of surveillance data. Additionally, very little is known about control strategies. The purpose of this review was to contextualize the current knowledge about the epidemiology of zoonotic tuberculosis and to describe the available evidence regarding surveillance and control strategies in high-, middle-, and low-income countries. We conducted this review enriched by a One Health perspective, encompassing its inherent multifaceted characteristics. We found that the burden of zoonotic tuberculosis is likely to be underreported worldwide, with higher incidence in low-income countries, where the surveillance systems are even more fragile. Together with the lack of specific political commitment, surveillance data is affected by lack of a case definition and limitations of diagnostic methods. Control measures were dependent on risk factors and varied greatly between countries. This review supports the claim that a One Health approach is the most valuable concept to build capable surveillance systems, resulting in effective control measures. The disease characteristics and suggestions to implement surveillance and control programs are discussed.


2016 ◽  
Vol 16 (17) ◽  
pp. 1374-1391 ◽  
Author(s):  
Roberta Ettari ◽  
Santo Previti ◽  
Lucia Tamborini ◽  
Gregorio Cullia ◽  
Silvana Grasso ◽  
...  

2016 ◽  
Vol 16 (20) ◽  
pp. 2245-2265 ◽  
Author(s):  
Ajmer Singh Grewal ◽  
Deepti Pandita ◽  
Shashikant Bhardwaj ◽  
Viney Lather

Sign in / Sign up

Export Citation Format

Share Document