scholarly journals Imidazolium-type anion exchange membranes for improved organic acid transport and permselectivity in electrodialysis

Author(s):  
Matthew Jordan ◽  
Tanmay Kulkarni ◽  
Dodangodage Senadheera ◽  
Revati Kumar ◽  
Yupo Lin ◽  
...  

Abstract Most commercial anion exchange membranes (AEMs) deploy quaternary ammonium moieties. Alternative cation moieties have been explored in AEMs for fuel cells, but there are no studies focused examining alternative tethered cations in AEMs for ionic separations – such as organic acid anion transport via electrodialysis. H-cell and conductivity experiments demonstrate that tethered benzyl 1-methyl imidazolium groups in polysulfone AEMs enhance lactate conductivity by 49% and improved lactate anion flux by 24x when compared to a quaternary benzyl ammonium polysulfone AEM. An electrodialysis demonstration with the imidazolium-type AEM showed a 2x improvement in lactate anion flux and 20% improvement in permselectivity when benchmarked against the quaternary ammonium AEM. Molecular dynamics and 2D NOESY NMR revealed closer binding of lactate anions to the imidazolium cations when compared to the quaternary ammonium cation. It is posited that this closer binding is responsible to greater flux values observed with imidazolium-type AEM.

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 454
Author(s):  
Aruna Kumar Mohanty ◽  
Young-eun Song ◽  
Jung-rae Kim ◽  
Nowon Kim ◽  
Hyun-jong Paik

A class of phenolphthalein anilide (PA)-based poly(ether sulfone) multiblock copolymers containing pendant quaternary ammonium (QA) and imidazolium (IM) groups were synthesized and evaluated as anion exchange membrane (AEM) materials. The AEMs were flexible and mechanically strong with good thermal stability. The ionomeric multiblock copolymer AEMs exhibited well-defined hydrophobic/hydrophilic phase-separated morphology in small-angle X-ray scattering and atomic force microscopy. The distinct nanophase separated membrane morphology in the AEMs resulted in higher conductivity (IECw = 1.3–1.5 mequiv./g, σ(OH−) = 30–38 mS/cm at 20 °C), lower water uptake and swelling. Finally, the membranes were compared in terms of microbial fuel cell performances with the commercial cation and anion exchange membranes. The membranes showed a maximum power density of ~310 mW/m2 (at 0.82 A/m2); 1.7 and 2.8 times higher than the Nafion 117 and FAB-PK-130 membranes, respectively. These results demonstrated that the synthesized AEMs were superior to Nafion 117 and FAB-PK-130 membranes.


2016 ◽  
Vol 4 (36) ◽  
pp. 13938-13948 ◽  
Author(s):  
Chen Xiao Lin ◽  
Xiao Ling Huang ◽  
Dong Guo ◽  
Qiu Gen Zhang ◽  
Ai Mei Zhu ◽  
...  

Highly conductive anion exchange membranes can be achieved by tuning the length of flexible spacer between backbone and quaternary ammonium groups.


Polymer ◽  
2017 ◽  
Vol 121 ◽  
pp. 137-148 ◽  
Author(s):  
Qian Shi ◽  
Pei Chen ◽  
Xueliang Zhang ◽  
Qiang Weng ◽  
Xinbing Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document