scholarly journals BSS: A Brokering Model for Service Selection using Integrated Weighting approach in Federated Cloud

Author(s):  
Sameer Singh Chauhan ◽  
Emmanuel S Pilli ◽  
R C Joshi

Abstract Federated Cloud is a multi-cloud platform that integrates various cloud providers either through standardization or an agreement. The services offered by different federation members possess different access patterns, similar characteristics, varied performance levels, different costs, etc. This heterogeneity creates a challenging task for users to decide a suitable service as per their application requirements. Cloud broker, an inter-mediator is required in service and federation management to help both service provider and users. Cloud broker has to store all the information related to services and feedback of users on those services in order to provide the best services to end-users. Brokering model for service selection (BSS) has been proposed which employs integrated weighting approach in cloud service selection. Subjective and objective weights of QoS attributes are combined to compute integrated total weight. Subjective weight is obtained from users’ feedback on QoS attributes of a cloud service while objective weight is computed from benchmark tested data of cloud services. Users' feedback and preferences given to QoS parameters are employed in subjective weight computation. Objective weight is computed using Shannon's Entropy method. Total weight is obtained by combining subjective and objective weights. BSS method is employed to rank cloud services. Simulation with a case study on real dataset has been done to validate the effectiveness of BSS. The obtained results demonstrate the consistency of model for handling rank reversal problem and provides better execution time than other state-of-the art solutions.

Author(s):  
Sameer Singh Chauhan ◽  
Emmanuel S. Pilli ◽  
R. C. Joshi

AbstractCloud providers shares their resources and services through collaboration in order to increase resource utilization, profit and quality of services. The offered services with different access patterns, similar characteristics, varied performance levels and cost models create a heterogeneous service environment. It becomes a challenging task for users to decide a suitable service as per their application requirements. Cloud broker, an inter-mediator is required in service management to help both cloud providers and users. Cloud broker has to store all the information related to services and feedback of users on those services in order to provide the best services to end-users. Brokering model for service selection (BSS) has been proposed which employs integrated weighting approach in cloud service selection. Subjective and objective weights of QoS attributes are combined to compute integrated total weight. Subjective weight is obtained from users’ feedback on QoS attributes of a cloud service while objective weight is computed from benchmark tested data of cloud services. Users’ feedback and preferences given to QoS parameters are employed in subjective weight computation. Objective weight is computed using Shannon’s Entropy method. Total weight is obtained by combining subjective and objective weights. BSS method is employed to rank cloud services. Simulation with a case study on real dataset has been done to validate the effectiveness of BSS. The obtained results demonstrate the consistency of model for handling rank reversal problem and provides better execution time than other state-of-the art solutions.


Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


2021 ◽  
Vol 11 (1) ◽  
pp. 21-51
Author(s):  
Rohit Kumar Tiwari ◽  
Rakesh Kumar

Cloud computing has become a business model and organizations like Google, Amazon, etc. are investing huge capital on it. The availability of many organizations in the cloud has posed a challenge for cloud users to choose a best cloud service. To assist the cloud users, we have proposed a MCDM-based cloud service selection framework to choose a best service provider based on QoS requirement. The cloud service selection methods based on TOPSIS suffers from rank reversal problem as it ranks optimal service provider to non-optimal on addition or removal of a service provider and deludes the cloud user. Therefore, a robust and efficient TOPSIS (RE-TOPSIS)-based novel framework has been proposed to rank the cloud service providers using QoS provided by them and cloud user's priority for each QoS. The proposed framework is robust to rank reversal problem and its effectiveness has been demonstrated through a case study performed on a real dataset. Sensitivity analysis has also been performed to show the robustness against the rank reversal phenomenon.


2020 ◽  
Author(s):  
Falak Nawaz ◽  
Naeem Khalid Janjua

Abstract The number of cloud services has dramatically increased over the past few years. Consequently, finding a service with the most suitable quality of service (QoS) criteria matching the user’s requirements is becoming a challenging task. Although various decision-making methods have been proposed to help users to find their required cloud services, some uncertainties such as dynamic QoS variations hamper the users from employing such methods. Additionally, the current approaches use either static or average QoS values for cloud service selection and do not consider dynamic QoS variations. In this paper, we overcome this drawback by developing a broker-based approach for cloud service selection. In this approach, we use recently monitored QoS values to find a timeslot weighted satisfaction score that represents how well a service satisfies the user’s QoS requirements. The timeslot weighted satisfaction score is then used in Best-Worst Method, which is a multi-criteria decision-making method, to rank the available cloud services. The proposed approach is validated using Amazon’s Elastic Compute Cloud (EC2) cloud services performance data. The results show that the proposed approach leads to the selection of more suitable cloud services and is also efficient in terms of performance compared to the existing analytic hierarchy process-based cloud service selection approaches.


2020 ◽  
Vol 31 (4) ◽  
pp. 411-424
Author(s):  
Han Lai ◽  
Huchang Liao ◽  
Zhi Wen ◽  
Edmundas Kazimieras Zavadskas ◽  
Abdullah Al-Barakati

With the rapid growth of available online cloud services and providers for customers, the selection of cloud service providers plays a crucial role in on-demand service selection on a subscription basis. Selecting a suitable cloud service provider requires a careful analysis and a reasonable ranking method. In this study, an improved combined compromise solution (CoCoSo) method is proposed to identify the ranking of cloud service providers. Based on the original CoCoSo method, we analyze the defects of the final aggregation operator in the original CoCoSo method which ignores the equal importance of the three subordinate compromise scores, and employ the operator of “Linear Sum Normalization” to normalize the three subordinate compromise scores so as to make the results reasonable. In addition, we introduce a maximum variance optimization model which can increase the discrimination degree of evaluation results and avoid inconsistent ordering. A numerical example of the trust evaluation of cloud service providers is given to demonstrate the applicability of the proposed method. Furthermore, we perform sensitivity analysis and comparative analysis to justify the accuracy of the decision outcomes derived by the proposed method. Besides, the results of discrimination test also indicate that the proposed method is more effective than the original CoCoSo method in identifying the subtle differences among alternatives.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xu Wu

Mobile cloud computing (MCC) has attracted extensive attention in recent years. With the prevalence of MCC, how to select trustworthy and high quality mobile cloud services becomes one of the most urgent problems. Therefore, this paper focuses on the trustworthy service selection and recommendation in mobile cloud computing environments. We propose a novel service selection and recommendation model (SSRM), where user similarity is calculated based on user context information and interest. In addition, the relational degree among services is calculated based on PropFlow algorithm and we utilize it to improve the accuracy of ranking results. SSRM supports a personalized and trusted selection of cloud services through taking into account mobile user’s trust expectation. Simulation experiments are conducted on ns3 simulator to study the prediction performance of SSRM compared with other two traditional approaches. The experimental results show the effectiveness of SSRM.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Md Whaiduzzaman ◽  
Abdullah Gani ◽  
Nor Badrul Anuar ◽  
Muhammad Shiraz ◽  
Mohammad Nazmul Haque ◽  
...  

Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.


Cloud computing allows on-demand access and fast network connection to a shared resource pool. Most companies are switching to Cloud due to the popularity and benefits of using Cloud Services. So finding a suitable and best cloud provider is a challenge for all users. Several ranking methods, such as AHP, TOPSIS, had been suggested to solve this problem by multicriteria decision making techniques. But, many of the works focused on a subset of the main QoS attributes for ranking. Cloud Services Measurement Initiatives Consortium (CSMIC) has released Service Measurement Index attributes for effectively comparing the Cloud services. The comparison of services provided by cloud based on SMI attributes which are qualitative as well as quantitative in nature is studied in this paper by one of the non-parametric methods called Data Envelopment Analysis (DEA) and ranked the cloud services based on the efficiency scores obtained by DEA. The cloud users can select the best suitable Cloud service using the proposed approach that best suit their QoS requirements.


2021 ◽  
Author(s):  
Elena Degtiareve

As the multitude and complexity of cloud market increases the evaluation and selection of cloud services becomes a burdensome task for the users. With the increased rise of available services from various Cloud Service Providers (CSP), the role of cloud brokers becomes more and more important. In this thesis, the challenge of optimally allocating multiple cloud system resources to multiple mobile user’s requests with different requirements is investigated and an optimal Cloud Broker model is proposed. The cloud brokering mechanism is formulated as a Semi-Markov Decision Process (SMDP) model under the average system cost criteria, taking into consideration the cost of the occupying computing resources, the communication costs, the request traffic, and some security risk degrees and resource requirements from the multiple mobile users. Through minimizing the overall system cost, the optimal resource allocation policy is derived by using the Value Iteration Algorithm. Simulation results are provided, demonstrating the efficiency of the proposed Cloud Broker design.


Sign in / Sign up

Export Citation Format

Share Document