scholarly journals How many digits after decimal point are needed to use SUVmax as an identifier of tumors on FDG PET-CT?

2020 ◽  
Author(s):  
Kenji Hirata ◽  
Osamu Manabe ◽  
Keiichi Magota ◽  
Sho Furuya ◽  
Tohru Shiga ◽  
...  

Abstract Purpose The maximum standardized uptake value (SUVmax) is often described in daily clinical reports of FDG PET-CT. We investigated whether it would be possible to localize the voxel automatically based on the SUVmax. Methods The institutional review board approved this retrospective study. We investigated a total of 112 lesions from 30 FDG PET-CT images acquired with 3 different scanners. The number of voxels showing the given SUVmax was counted, where SUVmax was provided with various degrees of precision, such as 3, 3.1, 3.14, 3.142. The effects of local maximum restriction, where only local maximum voxels were chosen, were evaluated. Results SUVmax ranged from 1.3 to 49.1 (median = 5.6, IQR = 5.2). Generally, when larger and more precise SUVmax values were given, fewer voxels were included in the range. The local maximum restriction was very effective. When SUVmax was determined to 4 decimal places (e.g., 3.1416) and the local maximum restriction was applied, 33.3% (lesions with SUVmax<2), 79.5% (2≤SUVmax<5), and 97.8% of lesions (5≤SUVmax) were successfully identified (i.e., only a single voxel satisfied the criteria). Conclusions In FDG PET-CT, SUVmax can be used to localize the lesion if a large and precise SUVmax is provided.

2020 ◽  
Author(s):  
Kenji Hirata ◽  
Osamu Manabe ◽  
Keiichi Magota ◽  
Sho Furuya ◽  
Tohru Shiga ◽  
...  

Abstract PurposeThe maximum standardized uptake value (SUVmax) is often described in daily clinical reports of FDG PET-CT. We investigated whether it would be possible to localize the voxel automatically based on the SUVmax.MethodsThe institutional review board approved this retrospective study. We investigated a total of 112 lesions from 30 FDG PET-CT images acquired with 3 different scanners. The number of voxels showing the given SUVmax was counted, where SUVmax was provided with various degrees of precision, such as 3, 3.1, 3.14, 3.142. The effects of local maximum restriction, where only local maximum voxels were chosen, were evaluated.ResultsSUVmax ranged from 1.3 to 49.1 (median = 5.6, IQR = 5.2). Generally, when larger and more precise SUVmax values were given, fewer voxels were included in the range. The local maximum restriction was very effective. When SUVmax was determined to 4 decimal places (e.g., 3.1416) and the local maximum restriction was applied, 33.3% (lesions with SUVmax<2), 79.5% (2≤SUVmax<5), and 97.8% of lesions (5≤SUVmax) were successfully identified (i.e., only a single voxel satisfied the criteria).ConclusionsIn FDG PET-CT, SUVmax can be used to localize the lesion if a large and precise SUVmax is provided.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Amin Haghighat Jahromi ◽  
Donald A. Barkauskas ◽  
Matthew Zabel ◽  
Aaron M. Goodman ◽  
Garret Frampton ◽  
...  

Abstract Purpose Deriving links between imaging and genomic markers is an evolving field. 2-[18F]FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography–computed tomography) is commonly used for cancer imaging, with maximum standardized uptake value (SUVmax) as the main quantitative parameter. Tumor mutational burden (TMB), the quantitative variable obtained using next-generation sequencing on a tissue biopsy sample, is a putative immunotherapy response predictor. We report the relationship between TMB and SUVmax, linking these two important parameters. Methods In this pilot study, we analyzed 1923 patients with diverse cancers and available TMB values. Overall, 273 patients met our eligibility criteria in that they had no systemic treatment prior to imaging/biopsy, and also had 2-[18F]FDG PET/CT within 6 months prior to the tissue biopsy, to ensure acceptable temporal correlation between imaging and genomic evaluation. Results We found a linear correlation between TMB and SUVmax (p < 0.001). In the multivariate analysis, only TMB independently correlated with SUVmax, whereas age, gender, and tumor organ did not. Conclusion Our observations link SUVmax in readily available, routinely used, and noninvasive 2-[18F]FDG PET/CT imaging to the TMB, which requires a tissue biopsy and time to process. Since higher TMB has been implicated as a prognostic biomarker for better outcomes after immunotherapy, further investigation will be needed to determine if SUVmax can stratify patient response to immunotherapy.


2020 ◽  
Author(s):  
Kenji Hirata ◽  
Osamu Manabe ◽  
Keiichi Magota ◽  
Sho Furuya ◽  
Tohru Shiga ◽  
...  

Abstract Background Radiology reports contribute not only to the particular patient, but also to constructing massive training dataset in the era of artificial intelligence (AI). The maximum standardized uptake value (SUVmax) is often described in daily radiology reports of FDG PET-CT. If SUVmax can be used as an identifier of lesion, that would greatly help AI interpret radiology reports. We aimed to clarify whether the lesion can be localized using SUVmax written in radiology reports.Methods The institutional review board approved this retrospective study. We investigated a total of 112 lesions from 30 FDG PET-CT images acquired with 3 different scanners. SUVmax was calculated from DICOM files based on the latest Quantitative Imaging Biomarkers Alliance (QIBA) publication. The voxels showing the given SUVmax were exhaustively searched in the whole-body images and counted. SUVmax was provided with 5 different degrees of precision: integer (e.g., 3), 1st decimal places (DP) (3.1), 2nd DP (3.14), 3rd DP (3.142), and 4th DP (3.1416). For instance, when SUVmax=3.14 was given, the voxels with 3.135≤SUVmax<3.145 were extracted. We also evaluated whether local maximum restriction could improve the identifying performance, where only the voxels showing the highest intensity within some neighborhood were considered. We defined that “identical detection” was achieved when only single voxel satisfied the criterion.Results A total of 112 lesions from 30 FDG PET-CT images were investigated. SUVmax ranged from 1.3 to 49.1 (median = 5.6, IQR = 5.2). Generally, when larger and more precise SUVmax values were given, fewer voxels satisfied the criterion. The local maximum restriction was very effective. When SUVmax was determined to 4 decimal places (e.g., 3.1416) and the local maximum restriction was applied, identical detection was achieved in 33.3% (lesions with SUVmax<2), 79.5% (2≤SUVmax<5), and 97.8% (5≤SUVmax) of lesions.Conclusions SUVmax of FDG PET-CT can be used as an identifier to localize the lesion if precise SUVmax is provided and local maximum restriction was applied, although the lesions showing SUVmax<2 were difficult to identify. The proposed method may have potential to make use of radiology reports retrospectively for constructing training datasets for AI.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kenji Hirata ◽  
Osamu Manabe ◽  
Keiichi Magota ◽  
Sho Furuya ◽  
Tohru Shiga ◽  
...  

Background: Diagnostic reports contribute not only to the particular patient, but also to constructing massive training dataset in the era of artificial intelligence (AI). The maximum standardized uptake value (SUVmax) is often described in daily diagnostic reports of [18F] fluorodeoxyglucose (FDG) positron emission tomography (PET) – computed tomography (CT). If SUVmax can be used as an identifier of lesion, that would greatly help AI interpret diagnostic reports. We aimed to clarify whether the lesion can be localized using SUVmax strings.Methods: The institutional review board approved this retrospective study. We investigated a total of 112 lesions from 30 FDG PET-CT images acquired with 3 different scanners. SUVmax was calculated from DICOM files based on the latest Quantitative Imaging Biomarkers Alliance (QIBA) publication. The voxels showing the given SUVmax were exhaustively searched in the whole-body images and counted. SUVmax was provided with 5 different degrees of precision: integer (e.g., 3), 1st decimal places (DP) (3.1), 2nd DP (3.14), 3rd DP (3.142), and 4th DP (3.1416). For instance, when SUVmax = 3.14 was given, the voxels with 3.135 ≤ SUVmax &lt; 3.145 were extracted. We also evaluated whether local maximum restriction could improve the identifying performance, where only the voxels showing the highest intensity within some neighborhood were considered. We defined that “identical detection” was achieved when only single voxel satisfied the criterion.Results: A total of 112 lesions from 30 FDG PET-CT images were investigated. SUVmax ranged from 1.3 to 49.1 (median = 5.6). Generally, when larger and more precise SUVmax values were given, fewer voxels satisfied the criterion. The local maximum restriction was very effective. When SUVmax was determined to 4 decimal places (e.g., 3.1416) and the local maximum restriction was applied, identical detection was achieved in 33.3% (lesions with SUVmax &lt; 2), 79.5% (2 ≤ SUVmax &lt; 5), and 97.8% (5 ≤ SUVmax) of lesions.Conclusion: In this preliminary study, SUVmax of FDG PET-CT could be used as an identifier to localize the lesion if precise SUVmax is provided and local maximum restriction was applied, although the lesions showing SUVmax &lt; 2 were difficult to identify. The proposed method may have potential to make use of diagnostic reports retrospectively for constructing training datasets for AI.


CNS Oncology ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. CNS46 ◽  
Author(s):  
Meetakshi Gupta ◽  
Tejpal Gupta ◽  
Nilendu Purandare ◽  
Venkatesh Rangarajan ◽  
Ameya Puranik ◽  
...  

Aim: To prospectively assess the clinical utility of pretreatment flouro-deoxy-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) in patients with primary central nervous system (CNS) lymphoma (PCNSL). Materials & methods: Patients with suspected/proven PCNSL underwent baseline whole-body 18F-FDG-PET/CT. Maximum standardized uptake value and tumor/normal tissue ratios were compared between CNS lymphoma and other histological diagnoses. Results: The mean maximum standardized uptake value (27.5 vs 18.2; p = 0.001) and mean tumor/normal tissue ratio (2.34 vs 1.53; p < 0.001) of CNS lymphoma was significantly higher than other histologic diagnoses. Five of 50 (10%) patients with biopsy-proven CNS lymphomas had pathologically increased FDG-uptake at extraneuraxial sites uncovering systemic lymphoma. Conclusion: Pretreatment whole-body 18F-FDG-PET/CT provides valuable complementary information in the diagnostic and staging evaluation of patients with PCNSL to guide therapeutic decision-making.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Malgorzata Walentowicz-Sadlecka ◽  
Bogdan Malkowski ◽  
Pawel Walentowicz ◽  
Pawel Sadlecki ◽  
Andrzej Marszalek ◽  
...  

Purpose. The aim of this study was to determine if the preoperative maximum standardized uptake value (SUVmax) measured by 18F-FDG PET/CT in the primary tumor has prognostic value in the group of patients with endometrial cancer.Patients, Materials, and Methods. A total of one hundred one consecutive endometrial cancer patients, age range 40–82 years (mean 62 years) and FIGO I–IV stage, who underwent 18-FDG-PET/CT within two weeks prior radical surgery, were enrolled to the study. The maximum SUV was measured and compared with the clinicopathologic features of surgical specimens. The relationship between SUVmax and overall survival was analyzed.Results. The mean preoperative SUVmax was 14.34; range (3.90–33.80) and was significantly lower for FIGO I than for higher stages (P=0.0012), as well as for grade 1 than for grade 2 and 3 (P=0.018), deep myometrial invasion (P=0.0016) and for high risk group (P=0.0004). The analysis of survival ROC curve revealed SUVmax cut-off value of 17.7 to predict high risk of recurrence. Endometrial cancer patients with SUVmax higher than 17.7 characterized by lower overall survival.Conclusion. The preoperative SUVmax measured by 18F-FDG PET/CT is considered as an important indicator reflecting tumor aggressiveness which may predict poor prognosis. High value of SUVmax would be useful for making noninvasive diagnoses and deciding the appropriate therapeutic strategy for patients with endometrial cancer.


2010 ◽  
Vol 37 (8) ◽  
pp. 1467-1473 ◽  
Author(s):  
Hyun Hoon Chung ◽  
Byung-Ho Nam ◽  
Jae Weon Kim ◽  
Keon Wook Kang ◽  
Noh-Hyun Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document