scholarly journals An Efficient and High Accuracy P300 Detection for Brain Computer Interface System Based on Kernel Principal Component Analysis

Author(s):  
Mohammad Farukh Hashmi Mohammad Farukh Hashmi ◽  
Jagdish D.Kene Jagdish D.Kene ◽  
Deepali M.Kotambkar Deepali M.Kotambkar ◽  
Praveen Matte Praveen Matte ◽  
Avinash G.Keskar Avinash G.Keskar

Abstract Human machine interaction with the use of brain signals has been made possible by the advent of the technology popularly known as brain computer interface (BCI). P300 is one such brain signal which is used in many BCI systems. The problems associated with most of the existing P300 detection methods are that they are time consuming and computationally complex as they follow the procedure of averaging the values obtained from multiple trials. Also the existing single trial methods have been able to obtain only moderate accuracy levels. In this paper, a novel approach which for achieving a high level of accuracy has been proposed for single trial P300 signal detection amidst noise and artifacts. In this method features were obtained by applying Discrete Wavelet Transform followed by a technique making use of the obtained wavelet coefficients. Kernel Principal Component Analysis (KPCA) was used for reducing the feature dimension. Classification of the P300 signal using the reduced features was done using Support Vector Machine (SVM). The Dataset used was the Dataset II of the third BCI Competition. An accuracy of 98.53% was achieved for Subject S1 (signal obtained from the first person) and 99.25% for Subject S2 (signal obtained from the second person) by using the proposed method. A high level of accuracy was obtained, as compared to many existing techniques. Also the speed of classification was improved with the use of reduced feature dimensions.

Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 701 ◽  
Author(s):  
Beige Ye ◽  
Taorong Qiu ◽  
Xiaoming Bai ◽  
Ping Liu

In view of the nonlinear characteristics of electroencephalography (EEG) signals collected in the driving fatigue state recognition research and the issue that the recognition accuracy of the driving fatigue state recognition method based on EEG is still unsatisfactory, this paper proposes a driving fatigue recognition method based on sample entropy (SE) and kernel principal component analysis (KPCA), which combines the advantage of the high recognition accuracy of sample entropy and the advantages of KPCA in dimensionality reduction for nonlinear principal components and the strong non-linear processing capability. By using support vector machine (SVM) classifier, the proposed method (called SE_KPCA) is tested on the EEG data, and compared with those based on fuzzy entropy (FE), combination entropy (CE), three kinds of entropies including SE, FE and CE that merged with KPCA. Experiment results show that the method is effective.


Sign in / Sign up

Export Citation Format

Share Document