scholarly journals Numerical Characterization of the Load Distribution in Ball Screws

Author(s):  
Luca Sangalli ◽  
Aitor Oyanguren ◽  
Jon Larrañaga ◽  
Aitor Arana ◽  
Mikel Izquierdo ◽  
...  

Abstract Load distribution in ball screws is a representation of the ball contact stress, and it is fundamental to understanding the behavior of these machine elements. This work aims to conduct a multi-variable analysis of the load distribution in ball screws. For this purpose, a numerical tool is developed for the generation and calculation of ball screw FEM models, which has been validated against the state of the art. Many different design variables are studied in order to obtain a general characterization of the morphology of the load distribution in ball screws. The two most characteristic features, the non-uniformity at a local and global level are identified, along with as the possible causes of their appearance and the consequences that they may cause.

Author(s):  
Luca Sangalli ◽  
Aitor Oyanguren ◽  
Jon Larrañaga ◽  
Aitor Arana ◽  
Mikel Izquierdo ◽  
...  

AbstractLoad distribution in ball screws is a representation of the ball contact stress, and it is fundamental to understanding the behavior of these machine elements. This work aims to conduct a multi-variable analysis of the load distribution in ball screws. For this purpose, a numerical tool is developed for the generation and calculation of ball screw finite element (FE) models, which has been validated against the state of the art. This tool is based on the combination of an analytical contact model and the use of high-order FE models for the analysis of the load distribution of ball screws and stands out for its accuracy (less than 1% error against high-order FE models), adaptability, versatility (models are generated with more than 20 design variables and they can be introduced as components in larger models) and efficiency (being the computational time 1.25% of that of a high-order FE models) with respect to other existing models. Many different design variables (number of start threads, pitch, contact angle, ball size, slenderness and load arrangement) are studied in order to obtain a general characterization of the morphology of the load distribution in ball screws. Among them, the most influential variables on the load distribution and therefore on the structural behavior of ball screws are, load arrangement (with ratio r variations of up to 25% on the same ball screw) and slenderness (with ratio variations of up to 13% on ball screws with two turns of difference). The two most characteristic features, the non-uniformity at a local and global level are identified, along with as the possible causes of their appearance and the consequences that they may cause.


2019 ◽  
Vol 11 (23) ◽  
pp. 6622 ◽  
Author(s):  
Francisco Javier Abarca-Alvarez ◽  
Francisco Sergio Campos-Sánchez ◽  
Fernando Osuna-Pérez

In recent decades, the concept of urban density has been considered key to the creation of sustainable urban fabrics. However, when it comes to measuring the built density, a difficulty has been observed in defining valid measurement indicators universally. With the intention of identifying the variables that allow the best characterization of the shape of urban fabrics and of obtaining the metrics of their density, a multi-variable analysis methodology from the field of artificial intelligence is proposed. The main objective of this paper was to evaluate the capacity and interest of such a methodology from standard indicators of the built density, measured at various urban scales, (i) to cluster differentiated urban profiles in a robust way by assessing the results statistically, and (ii) to obtain the metrics that characterize them with an identity. As a case study, this methodology was applied to the state of the art European urban fabrics (N = 117) by simultaneously integrating 13 regular parameters to qualify urban shape and density. It was verified that the profiles obtained were more robust than those based on a limited number of indicators, evidencing that the proposed methodology offers operational opportunities in urban management by allowing the comparison of a fabric with the identified profiles.


Author(s):  
Ming Fan ◽  
Yanhui Han ◽  
Xinyu Tan ◽  
Liang Fan ◽  
Ellen S. Gilliland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document