Comparison of volume and hemodynamic effects of crystalloid, hydroxyethyl starch, and albumin in patients undergoing major abdominal surgery: a prospective observational study

2020 ◽  
Author(s):  
Daisuke Toyoda ◽  
Yuichi Maki ◽  
Yasumasa Sakamoto ◽  
Junki Kinoshita ◽  
Risa Abe ◽  
...  

Abstract Background The volume effect of iso-oncotic colloid is supposedly larger than crystalloid, but such differences are dependent on clinical context. The purpose of this study was to compare the volume and hemodynamic effects of crystalloid and colloid during surgical manipulation in patients undergoing major abdominal surgery. Methods Subjects undergoing intraabdominal surgery for malignancies with intraoperative goal-directed fluid management enrolled in this observational study. Fluid challenges consisted with 250 ml of either bicarbonate Ringer solution, 6% hydroxyethyl starch or 5% albumin were provided to maintain optimal stroke volume index. Hematocrit derived-plasma volume and colloid osmotic pressure was determined immediately before and 30 min after the fluid challenge. Data were expressed as median (IQR) and statistically compared with Kruskal-Wallis test. Results One hundred thirty-nine fluid challenges in 65 patients were analyzed. bicarbonate Ringer solution, 6% hydroxyethyl starch and 5% albumin were administered in 42, 49 and 48 instances, respectively. Plasma volume increased 7.3 (3.6–10.0) % and 6.3 (1.4–8.8) % 30 min after the fluid challenge with 6% hydroxyethyl starch and 5% albumin and these values are significantly larger than the value with bicarbonate Ringer solution (1.0 (-2.7-2.3) %) Colloid osmotic pressure increased 0.6 (0.2–1.2) mmHg after the fluid challenge with 6% hydroxyethyl starch and 0.7(0.2–1.3) mmHg with 5% albumin but decreased 0.6 (0.2–1.2) mmHg after the fluid challenge with bicarbonate Ringer solution. The area under the curve of stroke volume index after fluid challenge was significantly larger after 6% hydroxyethyl starch or 5% albumin compared to bicarbonate Ringer solution. Conclusions Fluid challenge with 6% hydroxyethyl starch and 5% albumin showed significantly larger volume and hemodynamic effects compared to bicarbonate Ringer solution during gastrointestinal surgery. Trial registration: UMIN Clinical Trial Registry UMIN000017964. Registered July 01, 2015

2017 ◽  
Vol 127 (3) ◽  
pp. 450-456 ◽  
Author(s):  
Matthieu Biais ◽  
Hugues de Courson ◽  
Romain Lanchon ◽  
Bruno Pereira ◽  
Guillaume Bardonneau ◽  
...  

Abstract Background Mini-fluid challenge of 100 ml colloids is thought to predict the effects of larger amounts of fluid (500 ml) in intensive care units. This study sought to determine whether a low quantity of crystalloid (50 and 100 ml) could predict the effects of 250 ml crystalloid in mechanically ventilated patients in the operating room. Methods A total of 44 mechanically ventilated patients undergoing neurosurgery were included. Volume expansion (250 ml saline 0.9%) was given to maximize cardiac output during surgery. Stroke volume index (monitored using pulse contour analysis) and pulse pressure variations were recorded before and after 50 ml infusion (given for 1 min), after another 50 ml infusion (given for 1 min), and finally after 150 ml infusion (total = 250 ml). Changes in stroke volume index induced by 50, 100, and 250 ml were recorded. Positive fluid challenges were defined as an increase in stroke volume index of 10% or more from baseline after 250 ml. Results A total of 88 fluid challenges were performed (32% of positive fluid challenges). Changes in stroke volume index induced by 100 ml greater than 6% (gray zone between 4 and 7%, including 19% of patients) predicted fluid responsiveness with a sensitivity of 93% (95% CI, 77 to 99%) and a specificity of 85% (95% CI, 73 to 93%). The area under the receiver operating curve of changes in stroke volume index induced by 100 ml was 0.95 (95% CI, 0.90 to 0.99) and was higher than those of changes in stroke volume index induced by 50 ml (0.83 [95% CI, 0.75 to 0.92]; P = 0.01) and pulse pressure variations (0.65 [95% CI, 0.53 to 0.78]; P < 0.005). Conclusions Changes in stroke volume index induced by rapid infusion of 100 ml crystalloid predicted the effects of 250 ml crystalloid in patients ventilated mechanically in the operating room.


2019 ◽  
Vol 130 (4) ◽  
pp. 541-549 ◽  
Author(s):  
Karim Bouattour ◽  
Jean-Louis Teboul ◽  
Laurent Varin ◽  
Eric Vicaut ◽  
Jacques Duranteau

Abstract Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Dynamic indices, such as pulse pressure variation, detect preload dependence and are used to predict fluid responsiveness. The behavior of sublingual microcirculation during preload dependence is unknown during major abdominal surgery. The purpose of this study was to test the hypothesis that during abdominal surgery, microvascular perfusion is impaired during preload dependence and recovers after fluid administration. Methods This prospective observational study included patients having major abdominal surgery. Pulse pressure variation was used to identify preload dependence. A fluid challenge was performed when pulse pressure variation was greater than 13%. Macrocirculation variables (mean arterial pressure, heart rate, stroke volume index, and pulse pressure variation) and sublingual microcirculation variables (perfused vessel density, microvascular flow index, proportion of perfused vessels, and flow heterogeneity index) were recorded every 10 min. Results In 17 patients, who contributed 32 preload dependence episodes, the occurrence of preload dependence during major abdominal surgery was associated with a decrease in mean arterial pressure (72 ± 9 vs. 83 ± 15 mmHg [mean ± SD]; P = 0.016) and stroke volume index (36 ± 8 vs. 43 ± 8 ml/m2; P < 0.001) with a concomitant decrease in microvascular flow index (median [interquartile range], 2.33 [1.81, 2.75] vs. 2.84 [2.56, 2.88]; P = 0.009) and perfused vessel density (14.9 [12.0, 16.4] vs. 16.1 mm/mm2 [14.7, 21.4], P = 0.009), while heterogeneity index was increased from 0.2 (0.2, 0.4) to 0.5 (0.4, 0.7; P = 0.001). After fluid challenge, all microvascular parameters and the stroke volume index improved, while mean arterial pressure and heart rate remained unchanged. Conclusions Preload dependence was associated with reduced sublingual microcirculation during major abdominal surgery. Fluid administration successfully restored microvascular perfusion.


Perfusion ◽  
2010 ◽  
Vol 25 (5) ◽  
pp. 283-291 ◽  
Author(s):  
Alexey A Schramko ◽  
Raili T Suojaranta-Ylinen ◽  
Anne H Kuitunen ◽  
Peter M Raivio ◽  
Sinikka I Kukkonen ◽  
...  

2004 ◽  
Vol 96 (1) ◽  
pp. 337-342 ◽  
Author(s):  
Karim Bendjelid ◽  
Peter M. Suter ◽  
Jacques A. Romand

The accuracy and clinical utility of preload indexes as bedside indicators of fluid responsiveness in patients after cardiac surgery is controversial. This study evaluates whether respiratory changes (Δ) in the preejection period (PEP; ΔPEP) predict fluid responsiveness in mechanically ventilated patients. Sixteen postcoronary artery bypass surgery patients, deeply sedated under mechanical ventilation, were enrolled. PEP was defined as the time interval between the beginning of the Q wave on the electrocardiogram and the upstroke of the radial arterial pressure. ΔPEP (%) was defined as the difference between expiratory and inspiratory PEP measured over one respiratory cycle. We also measured cardiac output, stroke volume index, right atrial pressure, pulmonary arterial occlusion pressure, respiratory change in pulse pressure, systolic pressure variation, and the Δdown component of SPV. Data were measured without positive end-expiratory pressure (PEEP) and after application of a PEEP of 10 cmH2O (PEEP10). When PEEP10 induced a decrease of >15% in mean arterial pressure value, then measurements were re-performed before and after volume expansion. Volume loading was done in eight patients. Right atrial pressure and pulmonary arterial occlusion pressure before volume expansion did not correlate with the change in stroke volume index after the fluid challenge. Systolic pressure variation, ΔPEP, Δdown, and change in pulse pressure before volume expansion correlated with stroke volume index change after fluid challenge ( r2 = 0.52, 0.57, 0.68, and 0.83, respectively). In deeply sedated, mechanically ventilated patients after cardiac surgery, ΔPEP, a new method, can be used to predict fluid responsiveness and hemodynamic response to PEEP10.


EP Europace ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1733-1741 ◽  
Author(s):  
Robert S Sheldon ◽  
Lucy Lei ◽  
Juan C Guzman ◽  
Teresa Kus ◽  
Felix A Ayala-Paredes ◽  
...  

Abstract Aims There are few effective therapies for vasovagal syncope (VVS). Pharmacological norepinephrine transporter (NET) inhibition increases sympathetic tone and decreases tilt-induced syncope in healthy subjects. Atomoxetine is a potent and highly selective NET inhibitor. We tested the hypothesis that atomoxetine prevents tilt-induced syncope. Methods and results Vasovagal syncope patients were given two doses of study drug [randomized to atomoxetine 40 mg (n = 27) or matched placebo (n = 29)] 12 h apart, followed by a 60-min drug-free head-up tilt table test. Beat-to-beat heart rate (HR), blood pressure (BP), and cardiac haemodynamics were recorded using non-invasive techniques and stroke volume modelling. Patients were 35 ± 14 years (73% female) with medians of 12 lifetime and 3 prior year faints. Fewer subjects fainted with atomoxetine than with placebo [10/29 vs. 19/27; P = 0.003; risk ratio 0.49 (confidence interval 0.28–0.86)], but equal numbers of patients developed presyncope or syncope (23/29 vs. 21/27). Of patients who developed only presyncope, 87% (13/15) had received atomoxetine. Patients with syncope had lower nadir mean arterial pressure than subjects with only presyncope (39 ± 18 vs. 69 ± 18 mmHg, P < 0.0001), and this was due to lower trough HRs in subjects with syncope (67 ± 30 vs. 103 ± 32 b.p.m., P = 0.006) and insignificantly lower cardiac index (2.20 ± 1.36 vs. 2.84 ± 1.05 L/min/m2, P = 0.075). There were no significant differences in stroke volume index (32 ± 6 vs. 35 ± 5 mL/m2, P = 0.29) or systemic vascular resistance index (2156 ± 602 vs. 1790 ± 793 dynes*s/cm5*m2, P = 0.72). Conclusion Norepinephrine transporter inhibition significantly decreased the risk of tilt-induced syncope in VVS subjects, mainly by blunting reflex bradycardia, thereby preventing final falls in cardiac index and BP.


2021 ◽  
Vol 30 ◽  
pp. S205
Author(s):  
A. Snir ◽  
M. Ng ◽  
G. Strange ◽  
D. Playford ◽  
S. Stewart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document