Development and characterization of Novel EST-based single-copy genic microsatellite DNA markers in white spruce and black spruce

Author(s):  
Om Rajora ◽  
Ishminder K. Mann

Abstract Background Due mainly to large genome size and prevalence of repetitive sequences in the nuclear genome of spruce ( Picea ), it is very difficult to develop single-copy genomic microsatellite markers. We have developed and characterized 25 polymorphic, single-copy genic microsatellites from white spruce ( Picea glauca ) EST sequences and determined their informativeness in white spruce and black spruce ( Picea mariana ) and inheritance in black spruce. Methods and Results White spruce EST sequences from NCBI dbEST were searched for the presence of microsatellite repeats. Forty-seven sequences containing dinucleotide, trinucleotide, tetranucleotide and compound repeats were selected to develop primers. Twenty-five of the designed primer pairs yielded scorable amplicons, with single-locus patterns, and were characterized in 20 individuals each of white spruce and black spruce. All 25 microsatellites were polymorphic in white spruce and 24 in black spruce. The number of alleles at a locus ranged from 2 to 18, with a mean of 8.8 in white spruce, and from 1 to 17, with a mean of 7.6 in black spruce. The expected heterozygosity/polymorphic information content ranged from 0.10 to 0.92, with a mean of 0.67 in white spruce, and from 0 to 0.93, with a mean of 0.59 in black spruce. Conclusions Microsatellites with dinucleotide and compound repeats were more informative than those with trinucleotide and tetranucleotide repeats. Eighteen microsatellite markers polymorphic between the parents of a black spruce controlled cross inherited in a single-locus Mendelian fashion. The microsatellite markers developed can be applied for various genetics, genomics, breeding, and conservation studies and applications.

2017 ◽  
Vol 47 (8) ◽  
pp. 1116-1122 ◽  
Author(s):  
Rongzhou Man ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Conifer winter damage results primarily from loss of cold hardiness during unseasonably warm days in late winter and early spring, and such damage may increase in frequency and severity under a warming climate. In this study, the dehardening dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud), jack pine (Pinus banksiana Lamb.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) B.S.P.) were examined in relation to thermal accumulation during artificial dehardening in winter (December) and spring (March) using relative electrolyte leakage and visual assessment of pine needles and spruce shoots. Results indicated that all four species dehardened at a similar rate and to a similar extent, despite considerably different thermal accumulation requirements. Spring dehardening was comparatively faster, with black spruce slightly hardier than the other conifers at the late stage of spring dehardening. The difference, however, was relatively small and did not afford black spruce significant protection during seedling freezing tests prior to budbreak in late March and early May. The dehardening curves and models developed in this study may serve as a tool to predict cold hardiness by temperature and to understand the potential risks of conifer cold injury during warming–freezing events prior to budbreak.


2001 ◽  
Vol 102 (8) ◽  
pp. 1252-1258 ◽  
Author(s):  
R. B. Hodgetts ◽  
M. A. Aleksiuk ◽  
A. Brown ◽  
C. Clarke ◽  
E. Macdonald ◽  
...  

1969 ◽  
Vol 45 (3) ◽  
pp. 184-186 ◽  
Author(s):  
L. Heger

Sets of site-index curves were prepared from stem analyses of white spruce (Picea glauca (Moench) Voss) and black spruce (P. mariana (Mill.) BSP.) from various regions in the boreal forest of Canada. Ordinates of the site-index curves, computed for 5-year breast-height age intervals up to 75 years, and for 10-foot site-index intervals up to 70 feet, were compared within the species for the same values of site index and age. For breast-height ages below 55 years and for site index below 70 feet, the maximum absolute difference among the ordinates did not exceed 2.0 feet in white spruce, and 1.6 feet in black spruce; the corresponding average deviations were 0.75 and 0.80 feet. For breast-height ages above 55 years, these differences increased with age and, at 75 years, reached 8.8 feet in white spruce, and 3.8 feet in black spruce; the corresponding average deviations were 4.40 and 1.53 feet.


1983 ◽  
Vol 59 (4) ◽  
pp. 189-191 ◽  
Author(s):  
A. A. Alm

Black spruce (Picea mariana (Mill.) B.S.P.) and white spruce (Picea glauca (Moench) Voss) styrob-lock and paperpot and 3-0 and 2-2 seedlings were planted spring and fall. After four seasons of growth the container seedlings had survival and height growth as good or better than the nursery seedlings. There were no differences in performance between the two container systems. The 2-2 stock generally had better survival than the 3-0 stock. Survival of fall-planted stock was equal to or better than that of the spring-planted stock. Key words: white spruce, black spruce, styroplugs, paper pots, seedlings, transplants, artificial regeneration, fall vs spring planting


1990 ◽  
Vol 68 (12) ◽  
pp. 2583-2589 ◽  
Author(s):  
S. M. Attree ◽  
T. E. Tautorus ◽  
D. I. Dunstan ◽  
L. C. Fowke

Somatic embryo maturation, germination, and soil establishment frequencies were compared for two conifer species, white and black spruce (Picea glauca and Picea mariana). The comparison of the two species regenerated and established in soil under the same conditions showed black spruce to be the most responsive. Shorter exposure times to 32 μM abscisic acid were not as effective as maturation on a medium containing 16 μM abscisic acid for 28 days. This gave similar maturation frequencies for the two species (6–8%), and germination frequencies of 64% for white spruce and over 73% for black spruce. Over 1800 black and white spruce plantlets were recovered, and more than 400 were transferred from in vitro to nonsterile conditions. Sixty percent (160) of the black spruce plantlets survived transfer and continued to grow vigorously. By comparison only 18% (29) of the white spruce plantlets survived, and half of these rapidly produced dormant buds and underwent no further shoot growth. White spruce plants that did not produce dormant buds grew vigorously. These results indicate that there are large differences in the ability of these closely related species to respond to plantlet establishment following regeneration from somatic embryos, and that black spruce is highly responsive to micropropagation by this method. Key words: Picea glauca, Picea mariana, somatic embryogenesis, maturation, germination, soil establishment.


Botany ◽  
2016 ◽  
Vol 94 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Rongzhou Man ◽  
Steve Colombo ◽  
Pengxin Lu ◽  
Qing-Lai Dang

Compared with the effects of spring frosts on opening buds or newly flushed tissues, winter freezing damage to conifers, owing to temperature fluctuations prior to budbreak, is rare and less known. In this study, changes in cold hardiness (measured based on electrolyte leakage and needle damage) and spring budbreak were assessed to examine the responses of four boreal conifer species — black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca) (Moench) Voss), jack pine (Pinus banksiana Lamb.), and lodgepole pine (Pinus contorta Dougl. ex. Loud.) — to different durations of experimental warming (16 °C day to –2 °C night with a 10 h photoperiod, except for night temperatures during November warming (+2 °C)). Seedlings showed increased responses to warming from November to March, while the capacity to regain the cold hardiness lost to warming decreased during the same period. This suggests an increasing vulnerability of conifers to temperature fluctuations and freezing damage with the progress of chilling and dormancy release from fall to spring. Both lodgepole pine and jack pine initiated spring growth earlier and had greater responses to experimental warming in bud phenology than black spruce and white spruce, suggesting a greater potential risk of frost/freezing damage to pine trees in the spring.


1981 ◽  
Vol 57 (6) ◽  
pp. 273-275 ◽  
Author(s):  
J. R. Blais

The history of spruce bubworm (Choristoneura fumiferana (Clem.)) outbreaks for the past two hundred years in the Ottawa River Valley in Quebec was retraced through radial-growth studies on old white spruce (Picea glauca (Moench)) and black spruce (Picea mariana (Mill.) B.S.P.) trees. The radial-growth profiles clearly indicate three suppression periods resulting from outbreaks that occurred in the twentieth century, each starting about 1910, 1940 and 1967. There is no evidence of an outbreak during the nineteenth century in this region. However, a reduction in radial-growth starting in 1783 observed on the only three specimens of white spruce over 200 years old, has the characteristics of that caused by a budworm outbreak. An interval of 127 years between this and the 1910 outbreak is similar to other long intervals between outbreaks recorded prior to the twentieth century for some other regions in eastern Canada.


2020 ◽  
Author(s):  
Qing-Lai Dang ◽  
Jacob Marfo ◽  
Fengguo Du ◽  
Rongzhou Man ◽  
Sahari Inoue

Abstract Aims Black spruce (Picea mariana [Mill.] B.S.P.) and white spruce (Picea glauca [Moench] Voss.) are congeneric species. Both are moderately shade tolerant and widely distributed across North American boreal forests. Methods To understand light effects on their ecophysiological responses to elevated [CO2], 1-year old seedlings were exposed to 360 and 720 µmol mol -1 [CO2] at three light conditions (100, 50 and 30% of full light in the greenhouse). Foliar gas exchanges were measured in the mid- and late-growing season. Important Findings Elevated [CO2] increased net photosynthesis (Pn) and photosynthetic water use efficiency, but it reduced stomatal conductance and transpiration. The stimulation of photosynthesis by CO2 was greatest at 50% light and smallest at 100%. Photosynthesis, maximum carboxylation rate (Vcmax) and light saturated rate of electron transport (Jmax) all decreased with decreasing light. Elevated [CO2] significantly reduced Vcmax across all light treatments and both species in mid-growing season. However, the effect of elevated [CO2] became insignificant at 30% light later in the growing season, with the response being greater in black spruce than in white spruce. Elevated [CO2] also reduced Jmax in white spruce in both measurements while the effect became insignificant at 30% light later in the growing season. However, the effect on black spruce varied with time. Elevated [CO2] reduced Jmax in black spruce in mid-growing season in all light treatments and the effect became insignificant at 30% light later in the growing season, while it increased Jmax later in the season at 100% and 50% light. These results suggest that both species benefited from elevated CO2, and that the responses varied with light supply, such that the response was primarily physiological at 100% and 50% light, while it was primarily morphological at 30% light.


Sign in / Sign up

Export Citation Format

Share Document