scholarly journals Elastic Settlement Analysis of Rigid Footings Relying On The “Characteristic Point” Concept

Author(s):  
Lysandros Pantelidis

Abstract In the present paper, the problem of finding the location of the so-called “characteristic point” of flexible footings is revisited. As known, the settlement at the characteristic point, is equal to the uniform settlement of the respective rigid footing. The cases of infinitely long strips and circular footings are studied fully analytically. For the case of rectangular footings, analytical results (for flexible footings) are compared with the respective numerical results (for rigid footings) obtained from 3D finite element analysis (210 cases were examined). As shown, the location of the characteristic point may greatly deviate from the well-known values reported in the literature, as it strongly depends on the thickness and Poisson’s ratio value of the compressible medium. For rectangular footings this location also depends on their aspect ratio, L/B. The location of the characteristic point with respect to the center of footing for the various cases examined is given in tabular form. Strain influence area values (Aj=ρjEs/qB) are also given for the convenient calculation of the settlement (ρj) of footings, especially the rigid, rectangular ones; q is the uniform surcharge of footing and Es the soil modulus.

Geosciences ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 491
Author(s):  
Lysandros Pantelidis ◽  
Elias Gravanis

In this paper an elastic settlement analysis method for rigid rectangular footings applicable to both clays and sands is proposed. The proposed method is based on the concept of equivalent shape, where any rectangular footing is suitably replaced by a footing of elliptical shape; the conditions of equal area and equal perimeter are satisfied simultaneously. The case of clay is differentiated from the case of sand using different contact pressure distribution, whilst, additionally, for the sands, the modulus of elasticity increases linearly with depth. The method can conveniently be calibrated against any set of settlement data obtained analytically, experimentally, or numerically; in this respect the authors used values which have been derived analytically from third parties. Among the most interesting findings is that sands produce “settlement x soil modulus/applied pressure” values approximately 10% greater than the respective ones corresponding to clays. Moreover, for large Poisson’s ratio (v) values, the settlement of rigid footings is closer to the settlement corresponding to the corner of the respective flexible footings. As v decreases, the derived settlement of the rigid footing approaches the settlement value corresponding to the characteristic point of the respective flexible footing. Finally, corrections for the net applied pressure, footing rigidity, and non-elastic response of soil under loading are also proposed.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3855
Author(s):  
Arturo Popoli ◽  
Leonardo Sandrolini ◽  
Andrea Cristofolini

In this paper, a strategy for reducing the electromagnetic interferences induced by power lines on metallic pipelines is proposed and numerically investigated. The study considers a set of steel conductors interposed between the power line and the pipeline. Different shapes of conductor cross sections and different magnetic permeabilities are considered, to identify the solution exhibiting the greatest mitigation efficiency for the same amount of material. The investigation is carried out by means of a quasi-3D finite element analysis. Results show that the main mechanism responsible for the mitigation is constituted by the currents induced in the screening conductors by the power line. Hence, a high magnetic permeability can have a detrimental effect since it reduces the skin depth to values below the size of the screening conductor. In this case, a reduction of the screening current and in the mitigation efficiency is observed. Nevertheless, the study shows that the use of strip-shaped screening conductors allows the employment of cheaper magnetic materials without compromising the mitigation efficacy of the screening conductors.


Sign in / Sign up

Export Citation Format

Share Document