scholarly journals A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels

Author(s):  
James Nicholas Sleigh ◽  
Steven J West ◽  
Giampietro Schiavo

Abstract Objective Dorsal root ganglion (DRG) are heterogeneous assemblies of assorted sensory neuron cell bodies found in bilateral pairs at every level of the spinal column. Unipolar afferent neurons convert external stimuli from the environment into electrical signals that are retrogradely transmitted to the spinal cord dorsal horn. To do this, they extend single axons from their DRG-resident somas that then bifurcate and project both centrally and distally. DRG can be dissected from mice at embryonic stages and any age post-natally, and have been extensively used to study sensory neuron development and function, response to injury, and pathological processes in acquired and genetic diseases. We have previously published a step-by-step dissection method for the rapid isolation of post-natal mouse DRG. Here, the objective is to extend the protocol by providing training videos that showcase the dissection in fine detail and permit the extraction of ganglia from defined spinal levels. Results By following this method, the reader will be able to swiftly and accurately isolate specific lumbar, thoracic, and cervical DRG from mice. Dissected ganglia can then be used for RNA/protein analyses, subjected to immunohistochemical examination, and cultured as explants or dissociated primary neurons, for in-depth investigations of sensory neuron biology.

2020 ◽  
Author(s):  
James Nicholas Sleigh ◽  
Steven J West ◽  
Giampietro Schiavo

Abstract Objective: Dorsal root ganglia (DRG) are heterogeneous assemblies of assorted sensory neuron cell bodies found in bilateral pairs at every level of the spinal column. Pseudounipolar afferent neurons convert external stimuli from the environment into electrical signals that are retrogradely transmitted to the spinal cord dorsal horn. To do this, they extend single axons from their DRG-resident somas that then bifurcate and project both centrally and distally. DRG can be dissected from mice at embryonic stages and any age post-natally, and have been extensively used to study sensory neuron development and function, response to injury, and pathological processes in acquired and genetic diseases. We have previously published a step-by-step dissection method for the rapid isolation of post-natal mouse DRG. Here, the objective is to extend the protocol by providing training videos that showcase the dissection in fine detail and permit the extraction of ganglia from defined spinal levels. Results: By following this method, the reader will be able to swiftly and accurately isolate specific lumbar, thoracic, and cervical DRG from mice. Dissected ganglia can then be used for RNA/protein analyses, subjected to immunohistochemical examination, and cultured as explants or dissociated primary neurons, for in-depth investigations of sensory neuron biology.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Javier Sábado ◽  
Anna Casanovas ◽  
Olga Tarabal ◽  
Marta Hereu ◽  
Lídia Piedrafita ◽  
...  

Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs). Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations ofsuperoxide dismutase 1(SOD1) gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used theSOD1G93Amouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG) proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.


2000 ◽  
Vol 92 (4) ◽  
pp. 968-976 ◽  
Author(s):  
Rita R. S. Ongjoco ◽  
Charlene D. Richardson ◽  
Xiaowen L. Rudner ◽  
Mark Stafford-Smith ◽  
Debra A. Schwinn

Background Nonselective alpha2-adrenergic receptor (alpha2AR) agonists (e.g., clonidine) mediate antinociception in part through alpha2ARs in spinal cord dorsal horn; however, use of these agents for analgesia in humans is limited by unwanted sedation and hypotension. The authors previously demonstrated alpha2a approximately alpha2b > > > alpha2c mRNA in human spinal cord dorsal horn cell bodies. However, because 20% of dorsal horn alpha2ARs derive from cell bodies that reside in the associated dorsal root ganglion (DRG), it is important to evaluate alpha2AR expression in this tissue as well. Therefore, the authors evaluated the hypothesis that alpha2b mRNA, alpha2c mRNA, or both are present in human DRG. Methods Molecular approaches were used to determine alpha2AR expression in 28 human DRGs because of low overall receptor mRNA expression and small sample size. After creation of synthetic competitor cDNA and establishment of amplification conditions with parallel efficiencies, competitive reverse transcription polymerase chain reaction was performed using RNA isolated from human DRG. Results Overall expression of alpha2AR mRNA in DRG is low but reproducible at all spinal levels. alpha2b and alpha2cAR subtype mRNAs predominate (alpha2b approximately alpha2c), accounting for more than 95% of the total alpha2AR mRNA in DRG at all human spinal nerve root levels. Conclusions Predominance of alpha2b and alpha2cAR mRNA in human DRG is distinct from alpha2AR mRNA expression in cell bodies originating in human spinal cord dorsal horn, where alpha2a and alpha2b predominate with little or absent alpha2c expression. These findings also highlight species heterogeneity in alpha2AR expression in DRG. If confirmed at a protein level, these findings provide an additional step in unraveling mechanisms involved in complex neural pathways such as those for pain.


2007 ◽  
Vol 11 (S1) ◽  
pp. S158-S159
Author(s):  
R. Kusuda ◽  
S. Zanon ◽  
T. Amaral E. Souza ◽  
F. Cadetti ◽  
N. Zanon-Baptista ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ye Zhang ◽  
Dan Zhao ◽  
Xutong Li ◽  
Beiyao Gao ◽  
Chengcheng Sun ◽  
...  

Neuropathic pain is one of the important challenges in the clinic. Although a lot of research has been done on neuropathic pain (NP), the molecular mechanism is still elusive. We aimed to investigate whether the Wnt/β-catenin pathway was involved in NP caused by sustaining dorsal root ganglion (DRG) compression with the chronic compression of dorsal root ganglion model (CCD). Our RNA sequencing results showed that several genes related to the Wnt pathway have changed in DRG and spinal cord dorsal horn (SCDH) after CCD surgery. Therefore, we detected the activation of the Wnt/β-catenin pathway in DRG and SCDH and found active β-catenin significantly upregulated in DRG and SCDH 1 day after CCD surgery and peaked on days 7-14. Immunofluorescence results also confirmed nuclear translocalization of active β-catenin in DRG and SCDH. Additionally, rats had obvious mechanical induced pain after CCD surgery and the pain was significantly alleviated after the application of the Wnt/β-catenin pathway inhibitor XAV939. Furthermore, we found that the levels of proinflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-18 (IL-18) were significantly elevated in CCD rat serum, while the levels of them were correspondingly decreased after the Wnt/β-catenin pathway being inhibited. The results of Spearman correlation coefficient analysis showed that the levels of TNF-α and IL-18 were negatively correlated with the mechanical withdrawal thresholds (MWT) after CCD surgery. Collectively, our findings suggest that the Wnt/β-catenin pathway plays a critical role in the pathogenesis of NP and may be an effective target for the treatment of NP.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Dan Zhu ◽  
Tingting Fan ◽  
Xinyue Huo ◽  
Jian Cui ◽  
Chi Wai Cheung ◽  
...  

Diabetic neuropathic pain (DNP) is a common and serious complication of diabetic patients. The pathogenesis of DNP is largely unclear. The proinflammation proteins, CXCR4, and TNF-α play critical roles in the development of pain, while their relative roles in the development of DNP and especially its progression is unknown. We proposed that establishment of diabetic pain models in rodents and evaluating the stability of behavioral tests are necessary approaches to better understand the mechanism of DNP. In this study, Von Frey and Hargreaves Apparatus was used to analyze the behavioral changes of mechanical allodynia and heat hyperalgesia in streptozotocin-induced diabetic rats at different phases of diabetes. Moreover, CXCR4 and TNF-α of spinal cord dorsal and dorsal root ganglia (DRG) were detected by western blotting and immunostaining over time. The values of paw withdrawal threshold (PWT) and paw withdrawal latencies (PWL) were reduced as early as 1 week in diabetic rats and persistently maintained at lower levels during the progression of diabetes as compared to control rats that were concomitant with significant increases of both CXCR4 and TNF-α protein expressions in the DRG at 2 weeks and 5 weeks (the end of the experiments) of diabetes. By contrast, CXCR4 and TNF-α in the spinal cord dorsal horn did not significantly increase at 2 weeks of diabetes while both were significantly upregulated at 5 weeks of diabetes. The results indicate that central sensitization of spinal cord dorsal may result from persistent peripheral sensitization and suggest a potential reference for further treatment of DNP.


Sign in / Sign up

Export Citation Format

Share Document