scholarly journals Theoretical study of the electric and the magnetic dipole in UV-Vis and ECD of fluralaner: the folded conformation and the extended conformation

Author(s):  
kamal ziadi

Abstract In our contribution, we have carried out a theoretical study of the transition characteristics of one-photon absorption (OPA) spectra of the folded conformation and the extended conformation of fluralaner. The electronic transitions in OPA are visualized with charge difference density (CDD) and transition density matrix (TDM) to explain the charge transfer via hole-electron distribution. We also analyze the transition dipole electric/ magnetic moment by using the isosurface (real space) and TDM diagram in order to determine the portions of molecules which have the most contribution in ECD spectra.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan-Fang Kong ◽  
Xiao-Jun Tian ◽  
Yang Zhang ◽  
Yun-Jie Yu ◽  
Shi-Hao Jing ◽  
...  

AbstractVibronic coupling is a central issue in molecular spectroscopy. Here we investigate vibronic coupling within a single pentacene molecule in real space by imaging the spatial distribution of single-molecule electroluminescence via highly localized excitation of tunneling electrons in a controlled plasmonic junction. The observed two-spot orientation for certain vibronic-state imaging is found to be evidently different from the purely electronic 0–0 transition, rotated by 90°, which reflects the change in the transition dipole orientation from along the molecular short axis to the long axis. Such a change reveals the occurrence of strong vibronic coupling associated with a large Herzberg–Teller contribution, going beyond the conventional Franck–Condon picture. The emergence of large vibration-induced transition charges oscillating along the long axis is found to originate from the strong dynamic perturbation of the anti-symmetric vibration on those carbon atoms with large transition density populations during electronic transitions.


2011 ◽  
Vol 10 (05) ◽  
pp. 641-649 ◽  
Author(s):  
FENGJIE ZHOU ◽  
YAPING ZHANG ◽  
SHUO CAO ◽  
YONG DING ◽  
SHASHA LIU

A new organic dye (C201) composed of triarylamine unit as electron donor and anchoring unit as electron acceptor, was theoretically investigated by quantum chemical methods. We optimized the geometry of C201 with density functional theory (DFT) at B3LYP/6-311G (d) level. Densities of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), as well as the energies are listed. The excited states of the dye molecules C201 were calculated by time dependent-DFT (TD-DFT) method. Two main visible bands at 572 nm and 407 nm were mainly attributed to the electronic transition from HOMO→LUMO and HOMO-1→LUMO, respectively. 3D cube representations including transition density (TD) and charge difference density (CDD) directly visualized the character of intramolecular charge transfer of C201. The orientation and strength of transition dipole moment were showed visually using TD. Furthermore, we illustrate the orientation and results of the intramolecular charge transfer by CDD.


2006 ◽  
Vol 05 (02) ◽  
pp. 163-174 ◽  
Author(s):  
MENGTAO SUN ◽  
FENGCAI MA

A new binaphthalene molecule with two spiropyran units used for chiral molecular switches and logic gates was synthesized and characterized.12 In this paper, charge and energy transfer in binaphthalene molecule with two spiropyran units are theoretically investigated with quantum chemistry method, as well as 2D and 3D real space analysis methods, since molecule construction with photoinduced electron transfer or charge transfer is one of the most frequently used pathways for building useful sensors and molecular machines. The orientation and strength of transition dipole moment in absorption spectra are obtained by 3D transition density. The orientation and results of intramolecular charge transfer on the excitation are obtained with 3D charge difference densities. The electron-hole coherence and excitation delocalization in absorption spectra are investigated with 2D contour plots of transition density matrix. Overall, the computed results remain in good agreement with the relevant experimental data, and the theoretical results reveal the relationship between the function of sensor and the excited state properties of the structure and transformation of the compound, upon addition of acid and base in absorption spectra.


2018 ◽  
Vol 20 (30) ◽  
pp. 19720-19743 ◽  
Author(s):  
Huan Zong ◽  
Xinxin Wang ◽  
Jun Quan ◽  
Chunhua Tian ◽  
Mengtao Sun

We review photoinduced charge transfer in organic solar cells without and with an external electric field and then we introduce the visualization methods of the transition density, charge difference density and transition density matrix for the analysis of the photoinduced charge transfer in a neutral system and a charged system excited by one-photon and two-photon absorption.


2004 ◽  
Vol 82 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Xin Zhou ◽  
Ai-Min Ren ◽  
Ji-Kang Feng ◽  
Xiao-Juan Liu

The one-photon absorption (OPA) properties of tetrabenzoporphyrins (TBPs) and phthalocyanines (Pcs) were studied using the semiempirical ZINDO method and time-dependent density functional theory (TDDFT), respectively. The compared results confirmed that the semiempirical ZINDO method was reasonably reliable when calculating the OPA of tetrabenzoporphyrins and phthalocyanines. On the basis of the OPA properties obtained from the ZINDO method, two-photon absorption (TPA) properties of two series of molecules were investigated, using ZINDO and sum-over-states (SOS) methods. The results showed that the TPA cross-sections of all molecules were in the range of 220.6 × 10–50 – 345.9 × 10–50 cm4·s·photon–1, which were in the same order of magnitude as the values reported in the literature. The relatively larger δ(ω) value for Pcs with respect to that for corresponding TBPs originates from larger intramolecular charge transfer, which can be characterized by the difference of dipole moment between S0 and S1 and the transition dipole moment between S1 and S5.Key words: two-photon absorption, ZINDO, sum-over-states, tetrabenzoporphyrin, phthalocyanines.


2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Nguyen Ngoc Ha ◽  
Mai Anh Tuan ◽  
Dang Xuan Thu ◽  
Luong T. Thu Thuy

This paper reports the application of the Ru2+, Cu+, and Fe2+ complexes in form of RuL2(SCN)2, CuL2(SCN)2− for dye-sensitized solar cell (DSSC) development. The calculation results, given by quantum chemistry, demonstrated that the complex containing copper is more suitable than the one containing iron. The modification of Cu(I) complex by using various numbers of ligands enhanced photon absorption capacity as well as the absorption range. The addition of an organic ligand such as an electron attraction group to the benzene ring gave a better result as compared to the inorganic ones. Based on the analysis conducted, CuM2(SCN)2− is considered as potential material for N3 replacement.


2007 ◽  
Author(s):  
E. N. Koukaras ◽  
A. D. Zdetsis ◽  
C. S. Garoufalis ◽  
Theodore E. Simos ◽  
George Maroulis

Sign in / Sign up

Export Citation Format

Share Document