scholarly journals Genetic diversity of Plasmodium falciparum in Grande Comore Island

2020 ◽  
Author(s):  
Nasserdine Papa Mze ◽  
Hervé Bogreau ◽  
Cyrille K. Diedhiou ◽  
Vendela Herdell ◽  
Silai Rahamatou ◽  
...  

Abstract Background Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grand Comore compared to neighboring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 (msp1), merozoite surface protein 2 (msp2) and single nucleotide polymorphism (SNP) genetic markers.Methods A total of 151 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM).Results Two allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded

2020 ◽  
Author(s):  
Nasserdine Papa Mze ◽  
Hervé Bogreau ◽  
Cyrille K. Diedhiou ◽  
Vendela Herdell ◽  
Silai Rahamatou ◽  
...  

Abstract Background Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grand Comore compared to neighboring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P. falciparum by studying samples collected in Grande Comore in 2012 and 2013, using merozoite surface protein 1 ( msp1 ), merozoite surface protein 2 ( msp2 ) and single nucleotide polymorphism (SNP) genetic markers. Methods A total of 151 positive rapid diagnostic test (RDT) samples from Grande Comore were used to extract parasite DNA. Allelic families K1, Mad20 and RO33 of the msp1 gene as well as allelic families IC3D7 and FC37 of the msp2 gene were determined by using nested PCR. Additionally, 50 out of 151 samples were genotyped to study 24 SNPs by using high resolution melting (HRM). Results Two allelic families were predominant, the K1 family of msp1 gene (55%) and the FC27 family of msp2 gene (47.4%). Among 50 samples genotyped for 24 SNPs, 42 (84%) yielded interpretable results. Out of these isolates, 36 (85%) were genetically unique and 6 (15%) grouped into two clusters. The genetic diversity of Plasmodium falciparum calculated from msp gene ( msp1 and msp 2) and SNPs was 0.82 and 0.6 respectively. Conclusion In summary, a large genetic diversity of P. falciparum was observed in Grande Comore. This may favor persistence of malaria, and might be one of the reasons for the high malaria transmission compared to neighboring islands. Further surveillance of P. falciparum isolates, mainly through environmental management / vector control, is warranted until complete elimination is attained.


2018 ◽  
Vol 14 (4) ◽  
pp. 106-109
Author(s):  
Rosye Hefmi Rechnelty Tanjung ◽  
Yulius Sarungu ◽  
Meidy Johana Imbiri ◽  
Ade Irma Resmol ◽  
Dirk Yanes Persius Runtuboi ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Tolla Ndiaye ◽  
Mouhamad Sy ◽  
Amy Gaye ◽  
Katherine J. Siddle ◽  
Daniel J. Park ◽  
...  

Abstract Background Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. Methods Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. Results A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima’s D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = − 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). Conclusion This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.


2005 ◽  
Vol 73 (5_suppl) ◽  
pp. 55-61 ◽  
Author(s):  
ZILKA I. TERRIENTES ◽  
KENTON KRAMER ◽  
SANDRA P. CHANG ◽  
JUANA VERGARA ◽  
SÓCRATES HERRERA

2020 ◽  
Author(s):  
Hussein Mohammed Ali ◽  
Ashenafi Assefa ◽  
Melkie Chernet ◽  
Yonas Wulataw ◽  
Robert J Commons

Abstract Background: The characterization of parasite populations circulating in malaria endemic areas is necessary to evaluate the success of ongoing interventions and malaria control strategies. This study was designed to investigate the genetic diversity of Plasmodium falciparum isolates from the semi-arid area in North East Ethiopia, using the highly polymorphic merozoite surface protein-2 (msp2) gene as a molecular marker. Methods: Dried blood spot isolates were collected from patients with Plasmodium falciparum infection between September 2014 and January 2015 from Melka-Werer, North East Ethiopia. Parasite DNA was extracted and genotyped using allele-specific nested polymerase chain reactions for msp2. Results: 52 isolates were collected with msp2 identified in 41 (78.8%) isolates. Allele typing of the msp2 gene detected the 3D7/IC allelic family in 54% and FC27 allelic family in 46%. A total of 14 different msp2 genotypes were detected including 6 belonging to the 3D7/IC family and 8 to the FC27 family. Forty percent of isolates had multiple genotypes and the overall mean multiplicity of infections (MOI) was 1.2 (95%CI 0.96-1.42). The heterozygosity index was 0.50 for the msp2 locus. There was no difference in MOI between age groups. A negative correlation between parasite density and multiplicity of infection was found (p = 0.02).Conclusion: P. falciparum isolates from the semi-arid area of North East Ethiopia are mainly monoclonal with low MOI and limited genetic diversity in the study population.


2020 ◽  
Author(s):  
Tolla NDIAYE ◽  
Mouhamad Sy ◽  
Amy Gaye ◽  
Katherine J. Siddle ◽  
Daniel J. Park ◽  
...  

Abstract Background Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum , which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. Methods Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) genes in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. Results A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1 , a high positive Tajima’s D (TD) value was observed in the South (D=2.0453) while negative TD value was recorded in the North (D=-1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2 , non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas ( p=0.001 ). Conclusion This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.


Sign in / Sign up

Export Citation Format

Share Document