scholarly journals Effects of active gases on droplet transfer and weld morphology in pulsed-current NG-GMAW of mild steel

2021 ◽  
Author(s):  
Guoqiang Liu ◽  
Xinhua Tang ◽  
Qi Xu ◽  
Fenggui Lu ◽  
Haichao Cui

Abstract The current research of narrow-gap gas metal arc welding (NG-GMAW) primarily focuses on improving the sidewall fusion and avoiding the lack-of-fusion defect. However, the high cost and operation difficulty of the methods limit the industrial application. In this study, small amount of active gases CO2 and O2 were added into pure argon inert shielding gas to improve the weld formation of pulsed-current narrow-gap gas metal arc welding (NG-GMAW) of mild steel. Their effects on droplet transfer and arc behavior were investigated. A high-speed visual sensing system was utilized to observe the metal transfer process and arc morphology. When the proportion of CO2, being added into the pure argon shielding gas, changes from 5% to 25%, the metal transfer mode changes from pulsed spray streaming transfer to pulsed projected spray transfer, while it remains the pulsed spray streaming transfer when 2% to 10% O2 is added. Both CO2 and O2 are favorable to stabilizing arc and welding process. O2 is even more effective than CO2. However, O2 is more likely to cause slags on the weld surface, while CO2 can improve the weld appearance in some sense. The weld surface concavity in NG-GMAW is greatly influenced by the addition of active gas, but the weld width and weld penetration almost keep constant. This study proposes a new method which is beneficial to improving the weld bead formation and welding process stability.

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Guoqiang Liu ◽  
Xinhua Tang ◽  
Qi Xu ◽  
Fenggui Lu ◽  
Haichao Cui

AbstractThe current research of narrow-gap gas metal arc welding (NG-GMAW) primarily focuses on improving the sidewall fusion and avoiding the lack-of-fusion defect. However, the high cost and operation difficulty of the methods limit the industrial application. In this study, small amount of active gases CO2 and O2 were added into pure argon inert shielding gas to improve the weld formation of pulsed-current narrow-gap gas metal arc welding (NG-GMAW) of mild steel. Their effects on droplet transfer and arc behavior were investigated. A high-speed visual sensing system was utilized to observe the metal transfer process and arc morphology. When the proportion of CO2, being added into the pure argon shielding gas, changes from 5% to 25%, the metal transfer mode changes from pulsed spray streaming transfer to pulsed projected spray transfer, while it remains the pulsed spray streaming transfer when 2% to 10% O2 is added. Both CO2 and O2 are favorable to stabilizing arc and welding process. O2 is even more effective than CO2. However, O2 is more likely to cause slags on the weld surface, while CO2 can improve the weld appearance in some sense. The weld surface concavity in NG-GMAW is greatly influenced by the addition of active gas, but the weld width and weld penetration almost keep constant. This study proposes a new method which is beneficial to improving the weld bead formation and welding process stability.


2020 ◽  
Author(s):  
Guoqiang Liu ◽  
Xinhua Tang ◽  
Qi Xu ◽  
Fenggui Lu ◽  
Haichao Cui

Abstract Small amount of active gases CO 2 and O 2 were added into pure argon inert shielding gas to improve the weld formation of pulsed-current narrow-gap gas metal arc welding (NG-GMAW) of mild steel. Their effects on droplet transfer and arc behavior were investigated. A high-speed visual sensing system was utilized to observe the metal transfer process and arc morphology. When the proportion of CO 2 , being added into the pure argon shielding gas, changes from 5% to 5%, the metal transfer mode changes from pulsed spray streaming transfer to pulsed projected spray transfer, while it remains the pulsed spray streaming transfer when 2% to 10% O 2 is added. Both CO 2 and O 2 are favorable to stabilizing arc and welding process. O 2 is even more effective than CO 2 . However, O 2 is more likely to cause the inclusion defects in the weld, while CO 2 can improve the weld appearance in some sense. The weld surface concavity, which is sensitive to the formation of lack-of-fusion defect in NG-GMAW, is greatly influenced by the addition of active gas, but the weld width and weld penetration almost keep constant.


2011 ◽  
Vol 341-342 ◽  
pp. 16-20
Author(s):  
Mongkol Chaisri ◽  
Prachya Peasura

The research was study the effect of gas metal arc welding process parameters on mechanical property. The specimen was carbon steel ASTM A285 grade A which thickness of 6 mm. The experiments with full factorial design. The factors used in this study are shielding gas and voltage. The welded specimens were tested by tensile strength testing and hardness testing according to ASME boiler and pressure vessel code section IX 2007. The result showed that both of shielding gas and voltage had interaction on tensile strength and hardness at 95% confidential (P value < 0.05). Factors affecting the tensile strength are the most carbon dioxide and 27 voltage were tensile strength 213.43 MPa. And hardness maximum of 170.60 HV can be used carbon dioxide and 24 voltage. This research can be used as data in the following appropriate parameters to gas metal arc welding process.


Sign in / Sign up

Export Citation Format

Share Document