scholarly journals Identification of Protective Peptides of Fasciola Hepatica-Derived Cathepsin L1 (FhCL1) in Vaccinated Sheep by a Linear B-cell Epitope Mapping Approach

2020 ◽  
Author(s):  
Leandro Buffoni Perazzo ◽  
Laura Garza-Cuartero ◽  
Raúl Pérez-Caballero ◽  
Rafael Zafra ◽  
F. Javier Martínez-Moreno ◽  
...  

Abstract Background Fasciolosis is one of the most important parasitic diseases of livestock. The need for better control strategies gave rise to the identification of various vaccine candidates. The recombinant form of a member of the cysteine protease family, cathepsin L1 of Fasciola hepatica (FhCL1) has been a vaccine target for the past few decades since it has been shown to behave as an immunodominant antigen. However, when FhCL1 was used as vaccine, it has been observed to elicit significant protection in some trials, whereas no protection was provided in others.Methods In order to improve vaccine development strategy, we conducted a linear B-cell epitope mapping of FhCL1 in vaccinated-protected, vaccinated but not protected, and unvaccinated-infected sheep.Results Our study showed that the pattern and dynamic of peptide recognition varied noticeably between protected and non-protected animals, and that the regions 55–63 and 77–84, which are within the propeptide, and regions 102–114 and 265–273 of FhCL1 were specifically recognised only by vaccinated-protected animals with significant decrease in fluke burden. In addition, these animals also showed significant production of specific IgG2, whereas none was observed in non-protected and infected animals.Conclusions We have identified forty-two residues of FhCL1 that contributed to protective immunity against infection with F. hepatica in sheep. Our results provide indications in relation to key aspects of the immune response. Given the variable outcomes of vaccination trials conducted in ruminants to date, this study adds new insights to improve strategies of vaccine development.

2020 ◽  
Author(s):  
Leandro Buffoni Perazzo ◽  
Laura Garza-Cuartero ◽  
Raúl Pérez-Caballero ◽  
Rafael Zafra ◽  
F. Javier Martínez-Moreno ◽  
...  

Abstract The authors have withdrawn this preprint due to erroneous posting.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Leandro Buffoni ◽  
Laura Garza-Cuartero ◽  
Raúl Pérez-Caballero ◽  
Rafael Zafra ◽  
F. Javier Martínez-Moreno ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanokporn Polyiam ◽  
Waranyoo Phoolcharoen ◽  
Namphueng Butkhot ◽  
Chanya Srisaowakarn ◽  
Arunee Thitithanyanont ◽  
...  

AbstractSARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.


Vaccine ◽  
2011 ◽  
Vol 29 (6) ◽  
pp. 1278-1282 ◽  
Author(s):  
Ping Huang ◽  
Yuansheng Xu ◽  
Hanzhong Ni ◽  
Jing Zhong ◽  
Xin Zhang ◽  
...  

2020 ◽  
Author(s):  
Lin Li ◽  
Zhongpeng Zhao ◽  
Xiaolan Yang ◽  
WenDong Li ◽  
Shaolong Chen ◽  
...  

SARS-CoV-2 unprecedentedly threatens the public health at worldwide level. There is an urgent need to develop an effective vaccine within a highly accelerated time. Here, we present the most comprehensive S-protein-based linear B-cell epitope candidate list by combining epitopes predicted by eight widely-used immune-informatics methods with the epitopes curated from literature published between Feb 6, 2020 and July 10, 2020. We find four top prioritized linear B-cell epitopes in the hotspot regions of S protein can specifically bind with serum antibodies from horse, mouse, and monkey inoculated with different SARS-CoV-2 vaccine candidates or a patient recovering from COVID-19. The four linear B-cell epitopes can induce neutralizing antibodies against both pseudo and live SARS-CoV-2 virus in immunized wild-type BALB/c mice. This study suggests that the four linear B-cell epitopes are potentially important candidates for serological assay or vaccine development.


2018 ◽  
Vol 9 ◽  
Author(s):  
Monique Paiva Campos ◽  
Fabiano Borges Figueiredo ◽  
Fernanda Nazaré Morgado ◽  
Alinne Rangel dos Santos Renzetti ◽  
Sara Maria Marques de Souza ◽  
...  

2014 ◽  
Vol 99 (3) ◽  
pp. 1323-1336 ◽  
Author(s):  
Daniel Menezes-Souza ◽  
Tiago Antônio de Oliveira Mendes ◽  
Ana Carolina de Araújo Leão ◽  
Matheus de Souza Gomes ◽  
Ricardo Toshio Fujiwara ◽  
...  

2021 ◽  
Author(s):  
Lin Li ◽  
Zhongpeng Zhao ◽  
Xiaolan Yang ◽  
Wendong Li ◽  
Shaolong Chen ◽  
...  

Abstract SARS-CoV-2 unprecedentedly threatens the public health at worldwide level. There is an urgent need to develop an effective vaccine within a highly accelerated time. Here, we present the most comprehensive S-protein-based linear B-cell epitope candidate list by combining epitopes predicted by eight widely-used immune-informatics methods with the epitopes curated from literature published between Feb 6, 2020 and July 10, 2020. We find four top prioritized linear B-cell epitopes in the hotspot regions of S protein can specifically bind with pooled serum antibodies from horses, mice, and monkeys inoculated with different SARS-CoV-2 vaccine candidates or five patients recovering from COVID-19. The four linear B-cell epitopes can induce neutralizing antibodies against both pseudo and live SARS-CoV-2 virus in immunized wild-type BALB/c mice. This study suggests that the four linear B-cell epitopes are potentially important candidates for serological assay or vaccine development.


2018 ◽  
Vol 9 ◽  
Author(s):  
Monique Paiva Campos ◽  
Fabiano Borges Figueiredo ◽  
Fernanda Nazaré Morgado ◽  
Alinne Rangel dos Santos Renzetti ◽  
Sara Maria Marques de Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document