scholarly journals Leishmania infantum Virulence Factor A2 Protein: Linear B-Cell Epitope Mapping and Identification of Three Main Linear B-Cell Epitopes in Vaccinated and Naturally Infected Dogs

2018 ◽  
Vol 9 ◽  
Author(s):  
Monique Paiva Campos ◽  
Fabiano Borges Figueiredo ◽  
Fernanda Nazaré Morgado ◽  
Alinne Rangel dos Santos Renzetti ◽  
Sara Maria Marques de Souza ◽  
...  
2018 ◽  
Vol 9 ◽  
Author(s):  
Monique Paiva Campos ◽  
Fabiano Borges Figueiredo ◽  
Fernanda Nazaré Morgado ◽  
Alinne Rangel dos Santos Renzetti ◽  
Sara Maria Marques de Souza ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lenka Potocnakova ◽  
Mangesh Bhide ◽  
Lucia Borszekova Pulzova

Identification of B-cell epitopes is a fundamental step for development of epitope-based vaccines, therapeutic antibodies, and diagnostic tools. Epitope-based antibodies are currently the most promising class of biopharmaceuticals. In the last decade, in-depth in silico analysis and categorization of the experimentally identified epitopes stimulated development of algorithms for epitope prediction. Recently, various in silico tools are employed in attempts to predict B-cell epitopes based on sequence and/or structural data. The main objective of epitope identification is to replace an antigen in the immunization, antibody production, and serodiagnosis. The accurate identification of B-cell epitopes still presents major challenges for immunologists. Advances in B-cell epitope mapping and computational prediction have yielded molecular insights into the process of biorecognition and formation of antigen-antibody complex, which may help to localize B-cell epitopes more precisely. In this paper, we have comprehensively reviewed state-of-the-art experimental methods for B-cell epitope identification, existing databases for epitopes, and novel in silico resources and prediction tools available online. We have also elaborated new trends in the antibody-based epitope prediction. The aim of this review is to assist researchers in identification of B-cell epitopes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanokporn Polyiam ◽  
Waranyoo Phoolcharoen ◽  
Namphueng Butkhot ◽  
Chanya Srisaowakarn ◽  
Arunee Thitithanyanont ◽  
...  

AbstractSARS-CoV-2 continues to infect an ever-expanding number of people, resulting in an increase in the number of deaths globally. With the emergence of new variants, there is a corresponding decrease in the currently available vaccine efficacy, highlighting the need for greater insights into the viral epitope profile for both vaccine design and assessment. In this study, three immunodominant linear B cell epitopes in the SARS-CoV-2 spike receptor-binding domain (RBD) were identified by immunoinformatics prediction, and confirmed by ELISA with sera from Macaca fascicularis vaccinated with a SARS-CoV-2 RBD subunit vaccine. Further immunoinformatics analyses of these three epitopes gave rise to a method of linear B cell epitope prediction and selection. B cell epitopes in the spike (S), membrane (M), and envelope (E) proteins were subsequently predicted and confirmed using convalescent sera from COVID-19 infected patients. Immunodominant epitopes were identified in three regions of the S2 domain, one region at the S1/S2 cleavage site and one region at the C-terminus of the M protein. Epitope mapping revealed that most of the amino acid changes found in variants of concern are located within B cell epitopes in the NTD, RBD, and S1/S2 cleavage site. This work provides insights into B cell epitopes of SARS-CoV-2 as well as immunoinformatics methods for B cell epitope prediction, which will improve and enhance SARS-CoV-2 vaccine development against emergent variants.


Vaccine ◽  
2011 ◽  
Vol 29 (6) ◽  
pp. 1278-1282 ◽  
Author(s):  
Ping Huang ◽  
Yuansheng Xu ◽  
Hanzhong Ni ◽  
Jing Zhong ◽  
Xin Zhang ◽  
...  

2020 ◽  
Author(s):  
Lin Li ◽  
Zhongpeng Zhao ◽  
Xiaolan Yang ◽  
WenDong Li ◽  
Shaolong Chen ◽  
...  

SARS-CoV-2 unprecedentedly threatens the public health at worldwide level. There is an urgent need to develop an effective vaccine within a highly accelerated time. Here, we present the most comprehensive S-protein-based linear B-cell epitope candidate list by combining epitopes predicted by eight widely-used immune-informatics methods with the epitopes curated from literature published between Feb 6, 2020 and July 10, 2020. We find four top prioritized linear B-cell epitopes in the hotspot regions of S protein can specifically bind with serum antibodies from horse, mouse, and monkey inoculated with different SARS-CoV-2 vaccine candidates or a patient recovering from COVID-19. The four linear B-cell epitopes can induce neutralizing antibodies against both pseudo and live SARS-CoV-2 virus in immunized wild-type BALB/c mice. This study suggests that the four linear B-cell epitopes are potentially important candidates for serological assay or vaccine development.


2020 ◽  
Author(s):  
Leandro Buffoni Perazzo ◽  
Laura Garza-Cuartero ◽  
Raúl Pérez-Caballero ◽  
Rafael Zafra ◽  
F. Javier Martínez-Moreno ◽  
...  

Abstract The authors have withdrawn this preprint due to erroneous posting.


2020 ◽  
Author(s):  
Leandro Buffoni Perazzo ◽  
Laura Garza-Cuartero ◽  
Raúl Pérez-Caballero ◽  
Rafael Zafra ◽  
F. Javier Martínez-Moreno ◽  
...  

Abstract Background Fasciolosis is one of the most important parasitic diseases of livestock. The need for better control strategies gave rise to the identification of various vaccine candidates. The recombinant form of a member of the cysteine protease family, cathepsin L1 of Fasciola hepatica (FhCL1) has been a vaccine target for the past few decades since it has been shown to behave as an immunodominant antigen. However, when FhCL1 was used as vaccine, it has been observed to elicit significant protection in some trials, whereas no protection was provided in others.Methods In order to improve vaccine development strategy, we conducted a linear B-cell epitope mapping of FhCL1 in vaccinated-protected, vaccinated but not protected, and unvaccinated-infected sheep.Results Our study showed that the pattern and dynamic of peptide recognition varied noticeably between protected and non-protected animals, and that the regions 55–63 and 77–84, which are within the propeptide, and regions 102–114 and 265–273 of FhCL1 were specifically recognised only by vaccinated-protected animals with significant decrease in fluke burden. In addition, these animals also showed significant production of specific IgG2, whereas none was observed in non-protected and infected animals.Conclusions We have identified forty-two residues of FhCL1 that contributed to protective immunity against infection with F. hepatica in sheep. Our results provide indications in relation to key aspects of the immune response. Given the variable outcomes of vaccination trials conducted in ruminants to date, this study adds new insights to improve strategies of vaccine development.


2019 ◽  
Vol 14 (3) ◽  
pp. 226-233 ◽  
Author(s):  
Cangzhi Jia ◽  
Hongyan Gong ◽  
Yan Zhu ◽  
Yixia Shi

Background: B-cell epitope prediction is an essential tool for a variety of immunological studies. For identifying such epitopes, several computational predictors have been proposed in the past 10 years. Objective: In this review, we summarized the representative computational approaches developed for the identification of linear B-cell epitopes. </P><P> Methods: We mainly discuss the datasets, feature extraction methods and classification methods used in the previous work. Results: The performance of the existing methods was not very satisfying, and so more effective approaches should be proposed by considering the structural information of proteins. Conclusion: We consider existing challenges and future perspectives for developing reliable methods for predicting linear B-cell epitopes.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1079 ◽  
Author(s):  
Alice F. Versiani ◽  
Raissa Prado Rocha ◽  
Tiago A. O. Mendes ◽  
Glauco C. Pereira ◽  
Jordana Graziella A. Coelho dos Reis ◽  
...  

Dengue is currently one of the most important arbovirus infections worldwide. Early diagnosis is important for disease outcome, particularly for those afflicted with the severe forms of infection. The goal of this work was to identify conserved and polymorphic linear B-cell Dengue virus (DENV) epitopes that could be used for diagnostic purposes. To this end, we aligned the predicted viral proteome of the four DENV serotype and performed in silico B-cell epitope mapping. We developed a script in Perl integrating alignment and prediction information to identify potential serotype-specific epitopes. We excluded epitopes that were similarly present in the yellow fever and zika viruses’ proteomes. A total of 15 polymorphic and nine conserved peptides among DENV serotypes were selected. Peptides were spotted on cellulose membranes and tested against sera from rabbits that were monoinfected with each DENV serotype. Although serotype-specific peptides failed to recognize any sera, three conserved peptides were recognized by all anti-dengue sera and were included on an ELISA test employing a well-characterized human sera bank. Of the three peptides, one was able to efficiently identify sera from all four DENV serotypes and to discriminate them from Zika virus positive sera.


Sign in / Sign up

Export Citation Format

Share Document