scholarly journals High and low latitude controls on Mid-Brunhes coccolithophore bloom and its implications on ocean carbon cycle

Author(s):  
Hongrui Zhang ◽  
Chuanlian Liu ◽  
Iván Hernández‐Almeida ◽  
Luz Maria Mejia ◽  
Heather Stoll

Abstract Periodic ~400 kyr orbital scale variations in the ocean carbon cycle, manifest in indicators of deep sea dissolution and benthic 13C, have been observed throughout the Cenozoic but the driving mechanisms remain under debate. Changes in coccolithophore productivity may change the global rain ratio (Corganic: Cinorganic fluxes from ocean into sediment) and the balance of ocean carbonate system and thereby, potentially contributing to the ~400 kyr oscillation of the marine carbon cycle. Some evidence suggests that Pleistocene coccolithophore productivity was characterized by “bloom” events of high productivity coincident with the orbital benthic 13C signal. However, there is no consensus on the mechanism responsible for bloom events nor whether they were regional or global phenomena. In this study, we investigate the timing and spatial pattern of the most recent purported coccolithophore bloom event, which occurred during the Mid-Brunhes period. We find that maximum coccolithophore productivity is diachronous, peaking in the Southern Ocean sub-Antarctic zone with eccentricity minimum (~430 ka), peaking in upwelling zones some ~28 kyr later, and finally peaking in the western tropical Pacific occurred some ~80 kyr later. Simple globally homogeneous mechanisms of driving productivity such as temperature or light duration are not consistent with this pattern. Rather, we propose a dual high and low latitude control on blooms. Coincident with eccentricity minimum, increased high-latitude diatom silica consumption lowers the Si/P, leading to coccolithophorid blooms in the Southern Ocean north of the polar front. Coincident with increasing eccentricity, stronger tropical monsoons deliver higher fluvial nutrients to surface waters, increasing total (diatom and coccolithophore) productivity. Most of the tropical and subtropical locations are influenced by both processes with varying degrees, through the effect of silicic acid leakage on tropical thermocline waters and monsoon-related nutrient supply. Moreover, we propose that the high latitude processes have intensified over the Pleistocene, extending the 405 kyr carbon cycle to about 500 kyr.

Nature ◽  
1991 ◽  
Vol 352 (6335) ◽  
pp. 514-516 ◽  
Author(s):  
Walker O. Smith ◽  
Louis A. Codispoti ◽  
David M. Nelson ◽  
Thomas Manley ◽  
Edward J. Buskey ◽  
...  

2011 ◽  
Vol 39 (1-2) ◽  
pp. 170-182 ◽  
Author(s):  
M. Woloszyn ◽  
M. Mazloff ◽  
T. Ito

2018 ◽  
Vol 45 (24) ◽  
Author(s):  
C. Laufkötter ◽  
Alon A. Stern ◽  
Jasmin G. John ◽  
Charles A. Stock ◽  
John P. Dunne

Author(s):  
Michael D. DeGrandpre ◽  
Wiley Evans ◽  
Mary-Louise Timmermans ◽  
Richard A. Krishfield ◽  
William J Williams ◽  
...  

2011 ◽  
Vol 33 (3) ◽  
pp. 30-34
Author(s):  
Rod W. Wilson ◽  
Erin E. Reardon ◽  
Christopher T. Perry

Human activities, such as burning fossil fuels, are playing an important role in the rising levels of carbon dioxide (CO2) in the Earth's atmosphere1. The oceans may store a large portion of CO2 that we are releasing into the atmosphere, with up to 40% already taken up by the oceans. Although this absorption helps to offset some of the greenhouse effect of atmospheric CO2, it also contributes to ocean acidification, or a fall in the pH of sea water. The historical global mean pH of oceanic sea water is about 8.2, and this has already declined by 0.1 pH units (a 30% increase in H+ concentration) and is predicted to reach pH ~7.7 by the end of the century if current rates of fossil fuel use continue, leading to an atmospheric CO2 level of 800 p.p.m.1,2. Even this extreme potential fall in pH would still leave seawater above the neutral point (pH 7.0), so technically it is more accurate to say that the ocean is becoming less alkaline, rather than truly acidic (i.e. below pH 7.0). However, the magnitude is perhaps less important than the speed of pH change which is occurring faster than at any time during the previous 20 million years. Over this time, the average ocean pH has probably never fallen below pH 8.02,3. It is only during the last decade that the importance of ocean acidification has come to the forefront of concerns for scientists1,2. Consequences of these changes in global CO2 production are predicted to include elevated global temperatures, rising sea levels, more unpredictable and extreme weather patterns, and shifts in ecosystems1. In order to more fully understand the implications of ocean acidification, teams of researchers, including fisheries scientists, physiologists, geologists, oceanographers, chemists and climate modellers, are working to refine current understanding of the ocean carbon cycle.


2007 ◽  
Vol 253 (1-2) ◽  
pp. 83-95 ◽  
Author(s):  
R.E.M. Rickaby ◽  
E. Bard ◽  
C. Sonzogni ◽  
F. Rostek ◽  
L. Beaufort ◽  
...  

2018 ◽  
Vol 45 (10) ◽  
pp. 5062-5070 ◽  
Author(s):  
Jörg Schwinger ◽  
Jerry Tjiputra

Sign in / Sign up

Export Citation Format

Share Document