scholarly journals One-rod core microstructured optical fibers for evanescent sensing applications: an alternative approach

Author(s):  
Dinesh Kumar Sharma ◽  
Saurabh Mani Tripathi

Abstract The advent of polymer (or plastic) optical fibers (POFs) with porous cross-section has contributed significantly to the sensing applications. We intend to explore the sensing attributes of polymer-based one-rod core microstructured optical fibers (P-MOFs) via utilizing an auxiliary approach. The sensitivity coefficient and the overlapping factor of P-MOF’s introduced design in air-filled and water-filled layouts against the structural parameters are exploited. We reported the overlapping factor of ~ 94% and ~ 82% for the said configurations of the fibers, respectively, at the wavelength of 0.633 µm. The confinement loss, mode-index, and effective mode-area are also evaluated for the anticipated structures. For assessing the confinement loss, an alternative approach based on double-clad fiber (DCF) approximation is employed. The validity of the simulated results is scrutinized with those as documented in the literature. Relative errors are also tabulated.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1961
Author(s):  
Francesco Arcadio ◽  
Luigi Zeni ◽  
Aldo Minardo ◽  
Caterina Eramo ◽  
Stefania Di Di Ronza ◽  
...  

In a specific biosensing application, a nanoplasmonic sensor chip has been tested by an experimental setup based on an aluminum holder and two plastic optical fibers used to illuminate and collect the transmitted light. The studied plasmonic probe is based on gold nanograting, realized on the top of a Poly(methyl methacrylate) (PMMA) chip. The PMMA substrate could be considered as a transparent substrate and, in such a way, it has been already used in previous work. Alternatively, here it is regarded as a slab waveguide. In particular, we have deposited upon the slab surface, covered with a nanograting, a synthetic receptor specific for bovine serum albumin (BSA), to test the proposed biosensing approach. Exploiting this different experimental configuration, we have determined how the orientation of the nanostripes forming the grating pattern, with respect to the direction of the input light (longitudinal or orthogonal), influences the biosensing performances. For example, the best limit of detection (LOD) in the BSA detection that has been obtained is equal to 23 pM. Specifically, the longitudinal configuration is characterized by two observable plasmonic phenomena, each sensitive to a different BSA concentration range, ranging from pM to µM. This aspect plays a key role in several biochemical sensing applications, where a wide working range is required.


MRS Advances ◽  
2016 ◽  
Vol 1 (33) ◽  
pp. 2309-2320
Author(s):  
Alexandre François ◽  
Tess Reynolds ◽  
Nicolas Riesen ◽  
Jonathan M. M. Hall ◽  
Matthew R. Henderson ◽  
...  

ABSTRACTWhispering gallery modes (WGMs) have been widely studied over the past 20 years for various applications, including biological sensing. While the WGM-based sensing approaches reported in the literature have shown tremendous performance down to single molecule detection, at present such sensing technologies are not yet mature and still have significant practical constraints that limit their use in real-world applications. Our work has focused on developing a practical, yet effective, WGM-based sensing platform capable of being used as a dip sensor for in-vivo biosensing by combining WGM fluorescent microresonators with silica Microstructured Optical Fibers (MOFs).We recently demonstrated that a suspended core MOF with a dye-doped polymer microresonator supporting WGMs positioned onto the tip of the fiber, can be used as a dip sensor. In this architecture the resonator is anchored to one of the MOF air holes, in contact with the fiber core, enabling a significant portion of the evanescent field from the fiber to overlap with the sphere and hence excite the fluorescent WGMs. This architecture allows for remote excitation and collection of the WGMs. The fiber also permits easy manipulation of the microresonator for dip sensing applications, and hence alleviates the need for a complex microfluidic interface. More importantly, it allows for an increase in both the excitation and collection efficiency compared to free space coupling, and also improves the Q factor.In this paper we present our recent results on microstructured fiber tip WGM-based sensors and show that this sensing platform can be used in clinical diagnostics, for detecting various clinically relevant biomarkers in complex clinical samples.


2015 ◽  
Vol 15 (2) ◽  
pp. 112-115
Author(s):  
Juan Huang ◽  
Dana Křemenáková ◽  
Jiří Militký

Abstract Flex fatigue behaviour of plastic optical fibres (POFs) with the diameters of 0.2 and 0.3 mm under different pretensions is measured with fatigue life curve by flexometer. The fatigue sensitivity coefficient is calculated by the linear fitting curve of normalised stress versus logarithm of bending cycles. The residual modulus is investigated during the flex fatigue processes. The results exhibit the exponential relationship between applied pretension and numbers of bending cycles at break. It is indicated that the flex fatigue of POFs might be sensitive with high swing angle or swing speed. There is an evident loss of modulus for two POFs with pretensions of 4 and 10% of ultimate tensile strength during 10-times bending cycles. The values of residual modulus of two POFs almost keep constant after 10-times bending cycles.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2555
Author(s):  
Diego Lopez-Torres ◽  
Cesar Elosua ◽  
Francisco J. Arregui

Since the first publications related to microstructured optical fibers (MOFs), the development of optical fiber sensors (OFS) based on them has attracted the interest of many research groups because of the market niches that can take advantage of their specific features. Due to their unique structure based on a certain distribution of air holes, MOFs are especially useful for sensing applications: on one hand, the increased coupling of guided modes into the cladding or the holes enhances significantly the interaction with sensing films deposited there; on the other hand, MOF air holes enhance the direct interaction between the light and the analytes that get into in these cavities. Consequently, the sensitivity when detecting liquids, gasses or volatile organic compounds (VOCs) is significantly improved. This paper is focused on the reported sensors that have been developed with MOFs which are applied to detection of gases and VOCs, highlighting the advantages that this type of fiber offers.


2008 ◽  
Author(s):  
Felipe Beltrán-Mejía ◽  
Enrique Silvestre ◽  
Pedro Andrés ◽  
Cristiano M. B. Cordeiro ◽  
Christiano J. S. de Matos

Sign in / Sign up

Export Citation Format

Share Document