scholarly journals Appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine using c-arm fluoroscopy: a cadaveric study

2020 ◽  
Author(s):  
Wei-Xing Xu ◽  
wei-guo Ding ◽  
Bin Xu ◽  
Tian-Hong Hu ◽  
Hong-Feng Sheng ◽  
...  

Abstract Background: We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy. The purpose of this study was to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation. Methods: Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured. Results: In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P < 0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P < 0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive. Conclusion: Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.

2020 ◽  
Author(s):  
Wei-Xing Xu ◽  
wei-guo Ding ◽  
Bin Xu ◽  
Tian-Hong Hu ◽  
Hong-Feng Sheng ◽  
...  

Abstract Background: We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy. The purpose of this study was to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation. Methods: Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured. Results: In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P < 0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P < 0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive. Conclusion: Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei-Xing Xu ◽  
Wei-Guo Ding ◽  
Bin Xu ◽  
Tian-Hong Hu ◽  
Hong-Feng Sheng ◽  
...  

Abstract Background We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy. The purpose of this study was to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation. Methods Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured. Results In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P <  0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P <  0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive. Conclusion Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.


2020 ◽  
Author(s):  
Wei-Xing Xu ◽  
wei-guo Ding ◽  
Bin Xu ◽  
Tian-Hong Hu ◽  
Hong-Feng Sheng ◽  
...  

Abstract Background: We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy. The purpose of this study was to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation. Methods: Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured. Results: In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P < 0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P < 0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive. Conclusion: Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.


2020 ◽  
Author(s):  
Wei-Xing Xu ◽  
Wei-Guo Ding ◽  
Bin Xu ◽  
Tian-Hong Hu ◽  
Hong-Feng Sheng ◽  
...  

Abstract Background : We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation.Methods: Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured.Results: In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P < 0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P < 0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive.Conclusion: Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.Trial registration: retrospectively registered


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Guang-Ting Cong ◽  
Avani Vaishnav ◽  
Joseph Barbera ◽  
Hiroshi Kumagai ◽  
James Dowdell ◽  
...  

Abstract INTRODUCTION Posterior spinal instrumentation for fusion using intraoperative computed tomography (CT) navigation is gaining traction as an alternative to the conventional two-dimensional fluoroscopic-guided approach to percutaneous pedicle screw placement. However, few studies to date have directly compared outcomes of these 2 minimally invasive instrumentation methods. METHODS A consecutive cohort of patients undergoing primary percutaneous posterior lumbar spine instrumentation for spine fusion was retrospectively reviewed. Revision surgeries or cases converted to open were excluded. Accuracy of screw placement was assessed using a postoperative CT scan with blinding to the surgical methods used. The Gertzbein-Robbins classification was used to grade cortical breach: Grade 0 (<0 mm cortical breach), Grade I (<2 mm), Grade II (2-4 mm), Grade III (4-6 mm), and Grade IV (>6 mm). RESULTS CT navigation was found to significantly improve accuracy of screw placement (P < .022). There was significantly more facet violation of the unfused level in the fluoroscopy group vs the CT group (9% vs 0.5%; P < .0001). There was also a higher proportion of poor screw placement in the fluoroscopy group (10.1% vs 3.6%). No statistical difference was found in the rate of tip breach, inferomedial breach, or lateral breach. Regression analysis showed that fluoroscopy had twice the odds of incurring poor screw placement as compared to CT navigation. CONCLUSION This radiographic study comparing screw placement in minimally invasive fluoroscopy- vs CT navigation-guided lumbar spine instrumentation provides evidence that CT navigation significantly improves accuracy of screw placement, especially in optimizing the screw trajectory so as to avoid facet violation. Long-term follow-up studies should be performed to ascertain whether this difference can contribute to an improvement in clinical outcomes.


2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2015 ◽  
Vol 28 (9) ◽  
pp. E522-E527 ◽  
Author(s):  
Guangfei Gu ◽  
Hailong Zhang ◽  
Shisheng He ◽  
Xiaobing Cai ◽  
Xin Gu ◽  
...  

2021 ◽  
pp. 219256822110255
Author(s):  
Derong Xu ◽  
Xuexiao Ma ◽  
Lei Xie ◽  
Chuanli Zhou ◽  
Biao Kong

Study Design: Retrospective database study. Objectives: To compare the accuracy and safety of 2 types of a computer-assisted navigation system for percutaneous pedicle screw placement during endoscopic lumbar interbody fusion. Methods: From May 2019 to January 2020, data of 56 patients who underwent Endo-LIF with a robot-assisted system and with an electromagnetic navigation system were compared. The pedicles in all patients were subjected to postoperative CT scan to assess screw correction by measuring the perpendicular distance between the pedicle cortical wall and the screw surface. The registration and matching time, guide-wire insertion time, the entire surgery time, and X-ray exposure time were recorded. Results: In the robot-assisted group, 25 cases with 100 percutaneous pedicle screws were included, and the excellent and good rate was 95%. In the electromagnetic navigation group, 31 cases with 124 screws were included, and the excellent rate was 97.6%. There was no statistical difference between the two groups ( P > 0.05). The registration time and the total time for the surgery also showed no statistical differences ( P > 0.05). The main difference between the two groups was the guide-wire insertion time and the X-ray exposure time ( P < 0.05). Conclusions: Both electromagnetic navigation and robot-assisted are safe and efficient for percutaneous pedicle screw placement. Electromagnetic navigation system has obvious advantages over robot-assisted in terms of faster guide-wire placement and less X-ray exposure. Robot-assisted for percutaneous pedicle screw placement offers a preoperative planning system and a stable registration system, with obvious drawbacks of a strict training curve.


Sign in / Sign up

Export Citation Format

Share Document