scholarly journals The effects of Glucose and Ascorbic acid on in vitro development of Echinococcus granulosus Metacestodes

Author(s):  
Seyede Sogand Sajadi ◽  
Ali Haniloo ◽  
Samad Nadri ◽  
Negin Torabi

Abstract Echinococcus granulosus-developed metacestodes in the cultured medium are used for the assessment of its susceptibility to different compounds; however, this procedure is time-consuming and risky. In the present study, aspirated protoscoleces from the infected sheep were used to evaluate the effects of glucose, as an energy source, as well as ascorbic acid, as an antioxidant vitamin, on larval development. Protoscoleces were maintained in RPMI1640 culture media containing 10% fetal calf serum, as well as different concentrations of glucose (6 and 8 mg/ml) and ascorbic acid (25, 50, and 100 µg/ml). A culture medium containing 4 mg/ml of glucose was served as the control. Larger cysts were achieved in a shorter time from the medium enriched with 6 mg/ml of glucose (740 ± 20 µm) compared to the control group (420 ± 40 µm). However, in the groups treated with ascorbic acid, the number of cysts was higher in 100 µg/ml (32.5 ± 0.7) compared to the control group (12.5 ± 0.7). Additionally, the mature cysts were achieved on the 7th day of cultivation with 100 µg/ml of ascorbic acid compared to 18 days in the control group.

1994 ◽  
Vol 6 (2) ◽  
pp. 261 ◽  
Author(s):  
A Boediono ◽  
M Takagi ◽  
S Saha ◽  
T Suzuki

Oocytes were matured in medium supplemented with 5% serum collected from superovulated cows at oestrus (Day-0 SCS) or at the time of embryo collection (Day-7 SCS), or in medium supplemented with fetal calf serum (FCS). After insemination using frozen-thawed sperm, oocytes were cultured in vitro with medium supplemented with 5% Day-0 SCS or 5% Day-7 SCS or 5% FCS. The proportions of embryos that cleaved were not significantly different among treatments, whereas development of the embryo to a blastocyst was significantly higher in the presence of SCS than FCS. When the four possible combinations of Day-0 SCS and Day-7 SCS were used in the maturation and culture media, there were no differences among treatments, except that the cleavage rate was significantly higher (P < 0.05) with Day-0 SCS in the maturation medium and Day-7 SCS in the culture medium than with Day-7 SCS in the maturation medium and Day-0 SCS in the culture medium. The proportions of embryos that cleaved and developed to blastocysts were not related with the level of progesterone and luteinizing hormone in the serum added to the maturation and culture media. However, the use of serum with low concentrations of glucose, fatty acids and cholesterol in the maturation medium and the culture medium tended to be associated with a higher rate of cleavage and blastocyst development.


1996 ◽  
Vol 8 (8) ◽  
pp. 1153 ◽  
Author(s):  
N Yamauchi ◽  
H Sasada ◽  
S Sugawara ◽  
T Nagai

The effects of culture media used and culture period for in vitro maturation of porcine oocytes on their subsequent response to chemical and electrical activation, were investigated. Activated oocytes were identified by the presence of a pronucleus(ei) or cleavage. Porcine oocytes were cultured for 24, 30, 36, 42 and 48 h in TCM199 with Earle's salts (199) supplemented with 10% fetal calf serum (199-FCS) before electrical stimulation. Although few oocytes were activated after 24 h and 30 h of culture (5.4% and 6.1% respectively), the percentage of activated oocytes increased significantly to 93.2% after 42 h in culture (P < 0.05); however, when the culture period was extended to 48 h, there was a significant decrease to 56.7% (P < 0.05). Oocytes were also cultured in four types of media: (1) 199-FCS; (2) 199 supplemented with 5 mg mL-1 bovine serum albumin (199-BSA); (3) Kreb's-Ringer bicarbonate solution supplemented with 10% FCS (KRB-FCS); and (4) KRB supplemented with BSA (KRB-BSA). After 42 h of culture in each medium, the oocytes were electrically activated. Although rates of maturation of oocytes cultured in the four media were similar (74.0-80.8%), all oocytes except those cultured in 199-FCS failed to be activated. In addition, oocytes were cultured for 36, 42 and 48 h in 199-FCS and then stimulated by treatment with ethanol. Significantly fewer oocytes were activated in the chemically-treated group than in the electrically-treated group. These results indicate that culture conditions used for the culture of porcine oocytes in vitro are important with respect to their subsequent response to artificial activation.


2015 ◽  
Vol 27 (1) ◽  
pp. 205 ◽  
Author(s):  
E. Mullaart ◽  
F. Dotinga ◽  
C. Ponsart ◽  
H. Knijn ◽  
J. Schouten

Improving the efficiency of the in vitro production (IVP) process is very important because it results in more embryos to be used in breeding programs or as commercial service. At CRV, a culture medium consisting of SOF with amino acids and BSA is used. In the past, richer culture media were used with 10% fetal calf serum combined with BRL cell co-culture. Although the efficiency of the IVP process of these media was good, these rather high serum concentrations were quite often related to large offspring syndrome (LOS). The switch to a culture system without serum resulted in a significant reduction in LOS but also in a reduction of embryo yield. The aim of the present study was to investigate the effect of adding low amounts of serum to the culture medium on efficiency of embryo production. Immature cumulus-oocyte complexes (COC) were recovered from ovaries 6 to 8 h upon slaughter. The COC were matured in vitro in TCM199/FCS/LH/FSH supplemented with cysteamine (0.1 mM). Subsequently, matured oocytes were fertilised with frozen-thawed gradient-separated semen and further cultured for 7 days in SOFaaBSA. The SOF medium contained either 0 (control), 0.1, 0.5, or 1.0% oestrus cow serum (ECS). Embryos development was scored at Day 7. Three replicates were performed and results were analysed by chi-square analyses. The results clearly show that adding ECS significantly improved embryo production (Table 1). Interestingly, already very low amounts (0.1%) of serum gave a significant increase in embryo percentage. In conclusion, addition of very low amounts of ECS (0.1%) is beneficial for embryo production, resulting in significantly higher embryo production (from 19 to 27%). In a subsequent field trial with OPU-derived embryos, the effect of addition of 0.1% ECS on birth weight (LOS) of the calves has to be investigated. Table 1.Percentage of blastocysts at Day 7 after culture in SOF medium with different amounts of serum


2014 ◽  
Vol 26 (1) ◽  
pp. 196
Author(s):  
K. R. L. Schwarz ◽  
R. C. Botigelli ◽  
F. C. Castro ◽  
M. R. Chiaratti ◽  
C. L. V. Leal

The sensitivity of IVP embryos to cryopreservation is often associated with lipid accumulation in the cytoplasm induced by the presence of fetal calf serum (FCS) during culture. Intracellular levels of cyclic (c)AMP and cGMP are involved in the regulation of lipolysis in adipocytes; high levels stimulate lipolysis whereas low levels lead to lipogenesis. Both nucleotides are present in bovine oocytes, together with the enzymes for their synthesis and degradation. The aim of this study was to analysis the effect of FCS on the cGMP pathway and the influence of cGMP on cytoplasmic lipids in bovine oocytes. In experiments 1 and 2, cumulus–oocyte complexes (COC) were cultured for 24 h in maturation medium with different proportions of FCS (2 and 10%) and a control group was matured with 0.4% BSA. After this period, transcripts for cGMP pathway were assessed by real-time PCR (GUCY1B3 and PDE5, cGMP synthesis and degradation enzymes, respectively; experiment 1) in oocytes and cumulus cells, and cGMP levels were measured in COC using commercial enzyme immunoassay kits (EIA; experiment 2). In experiments 3 and 4, COC were matured for 24 h with 0.4% BSA and different concentrations of the phosphodiesterase (PDE)5 inhibitor (0, 10–7, and 10–5 M sildenafil) to inhibit cGMP degradation and a control group was matured with 0.4% BSA. The nucleotide levels were measured in COC (experiment 3) and the oocytes were stained with Nile Red (1 μg mL–1) for evaluation of lipid content (experiment 4). Statistical analyses were performed by ANOVA followed by Tukey post hoc test using SAS software (SAS Institute Inc., Cary, NC, USA). Data for gene expression from 5 replicates and for cGMP measurements and lipid content from 3 replicates were log10-transformed into before analyses. The level of significance was 5%. The presence of FCS reduced GUCY1B3 expression in both cells and increased PDE5A in cumulus cells (P < 0.05). In experiment 2, the groups treated with 2 (0.64 fmol/COC) and 10% FCS (1.04 fmol/COC) showed decreased cGMP levels compared with control (9.46 fmol/COC; P < 0.05). In experiment 3, inhibition of PDE5A increased cGMP levels in the treated groups (36 and 56 fmol/COC for 10–7 and 10–5 M sildenafil, respectively) compared with control (9.5 fmol/COC; P < 0.05). Therefore, sildenafil showed inverse effects compared with FCS (experiment 2). In experiment 4, oocytes treated with 10–7 and 10–5 M sildenafil showed a reduced lipid content compared with controls (11.6 ± 9.4 v. 13.9 μm2 fluorescence intensity, respectively; P < 0.05). The results suggest that FCS in maturation medium affects the cGMP pathway, interfering with the transcription of genes that control its levels, which in turn results in nucleotide reduction. Inhibition of PDE5 increases cGMP levels and reduces the lipid content of oocytes, indicating that changes in this pathway caused by FCS may affect lipid metabolism of oocytes. More studies are underway to better understand this mechanism. The authors acknowledge FAPESP 2012/00170-0 for financial support.


2007 ◽  
Vol 19 (1) ◽  
pp. 292
Author(s):  
K. R. L. Schwarz ◽  
T. H. C. de Bem ◽  
T. T. Zampieri ◽  
P. R. Adona ◽  
C. L. V. Leal

Nitric oxide (NO) is a chemical messenger detected in several cell types such as endothelial cells, neurons, and macrophages, exerting varied functions including vasodilatation, neurotransmission, and cell death induction. NO is generated by the activity of the enzyme nitric oxide synthase (NOS), which has been detected in several organs and tissues including the reproductive system. The aim of the present study was to assess the dose-response effect of N-omega-nitro-l-arginine-methyl ester (l-NAME), an NOS inhibitor, on in vitro nuclear and cytoplasmic maturation of bovine oocytes. Slaughterhouse ovaries were collected and their follicles (2–6 mm) were aspirated to obtain cumulus–oocyte complexes (COCs). Increasing l-NAME concentrations (0, 10-7, 10-5, 10-4, and 10-3 M) were added to IVM medium (TCM-199, supplemented with 10% fetal calf serum, 0.5 �g mL-1 FSH, 5.0 �g mL-1 LH, 0.2 mM pyruvate, and 10 mg mL-1 gentamicin); oocytes were cultured for 22 h. Nuclear maturation was assessed by propidium iodide staining (10 �g mL-1). For IVF, frozen–thawed semen prepared by Percoll gradient was used. Sperm cells were co-cultured with the oocytes at a final concentration of 2 � 106 sperm cells mL-1 in TALP-IVF medium supplemented with 2 �M penicillamine, 1 �M hypotaurine, 250 �M epinephrine, and 20 �g mL-1 heparin. After 20 h, presumptive zygotes were partially denuded and transferred to IVC medium (TCM-199 supplemented with 10% fetal calf serum, 2.0 mM pyruvate, and 10 mg mL-1 gentamicin). All cultures were at 38.5�C under 5% CO2 in air and maximum humidity. Cytoplasmic maturation was assessed by blastocyst development rates on Day 7. DNA fragmentation was assessed on Day 8 embryos by TUNEL (In Situ–Cell Death Detection kit, fluorescein; Roche Diagnostica Brasil, Sao Paulo, Brazil). Data were analyzed by ANOVA using the GLM procedure (SAS Institute, Inc., Cary, NC, USA), and means were compared by Duncan test at a 5% level. After IVM, the control group (0 M l-NAME) showed a greater number of oocytes in metaphase II (MII: 95.8 � 3.7%; P &lt; 0.05), whereas the groups cultured with l-NAME had lower MII rates (78–82%; P &lt; 0.05), irrespective of concentration (P &gt; 0.05). Many oocytes remained in metaphase I (MI: 18–22%). Cleavage rates at 48 h IVC was not affected (77–88%; P &gt; 0.05). Blastocyst rates (34.0 � 7.2% to 41.5 � 4.8%; P &gt; 0.05) and total cell numbers (151 to 174) were also unaffected by NO inhibition by l-NAME. However, the number of TUNEL-positive cells was lower in the control group (1.4 � 4.7; P &lt; 0.05) than in the treated groups (2.7 � 4.8 to 4.4 � 6.4; P &gt; 0.05). In conclusion, NO synthesis inhibition in oocytes during IVM reduces nuclear maturation, particularly during MI–MII transition, and increases apoptosis in blastocysts, suggesting that NO may be involved in oocyte maturation and apoptosis protection.


Zygote ◽  
2012 ◽  
Vol 22 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Daniela Martins Paschoal ◽  
Mateus José Sudano ◽  
Midyan Daroz Guastali ◽  
Rosiára Rosária Dias Maziero ◽  
Letícia Ferrari Crocomo ◽  
...  

SummaryThe objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.


2009 ◽  
Vol 32 (5) ◽  
pp. 345 ◽  
Author(s):  
Katarzyna Skórkowska-Telichowska ◽  
Rajmund Adamiec ◽  
Dominika Tuchendler ◽  
Kazimierz Gąsiorowski

Purpose. To determine, in vitro, the susceptibility to apoptosis of lymphocytes from patients with peripheral arterial disease (PAD) in the presence of a low culture medium serum concentration, and to evaluate the correlation of the degree of apoptosis and the serum lipid levels. Methods. Lymphocytes were isolated from the venous blood of PAD patients with lower limb ischemia secondary to obliterative atherosclerosis of Fountain stage IIb. None of the patients had received hypo-lipemic therapy. The lymphocytes were incubated for 48 hr in media containing reduced concentrations of fetal calf serum. The study group consisted of 10 patients (7 men and 3 women), with a mean age of 67.0 ± 4.0 yr. The control group consisted of ten healthy volunteers, of the same mean age and sex proportion as the study group. Results. The percentage of non-apoptotic lymphocytes was lower (by 17%) and the percentage of late apoptotic lymphocytes was higher (by 33%) in the PAD patients than in the healthy donors when comparing the slopes of regression lines describing the relation between frequency of apoptotic lymphocytes in culture media containing reduced concentration of fetal calf serum The percentage of late apoptotic lymphocytes was correlated with the levels of total cholesterol (rs=0.93; P < 0.01) and LDL cholesterol (rs=0.80; P < 0.01) , and negatively correlated with the level of triglycerides (rs=-0.71; P < 0.05). Conclusion. The results of this study of lymphocyte apoptosis are important in understanding of the disease pathogenesis and should be taken into account in elaboration of treatment strategies.


2010 ◽  
Vol 22 (1) ◽  
pp. 323 ◽  
Author(s):  
M. G. Catalá ◽  
D. Izquierdo ◽  
R. Romaguera ◽  
M. Roura ◽  
M. T. Paramio

The aim of this study was to assess the effect of an in vitro growth medium (De Wu et al. 2006 Biol. Rep. 75, 547-554) in prepubertal ewe oocytes selected by the brilliant cresyl blue (BCB) test. Prepubertal ewe oocytes were recovered by slicing ovaries of slaughtered animals and immediately exposed during 1 h to 13 μM BCB and classified according to their cytoplasm coloration (Rodriguez-Gonzalez E et al. 2002 Theri- ogenology 57(5), 1397-1409): BCB+ (blue cytoplasm, hypothetically grown oocytes) and BCB- (uncolored cytoplasm, hypothetically growing oocytes). Uncolored oocytes (BCB-) were matured using three culture media: growth medium (GM: TCM-199, 0.04 μg mL-1 FSH, 0.04 μg mL-1 LH, 0.004 μg mL-1 estradiol, 100 μg mL-1 ascorbic acid, and 5 μL mL-1 ITS: insulin transferrin selenium), conventional maturation medium (CM: TCM-199, 10 μg mL-1 FSH, 10 μg mL-1 LH and 1 μg mL-1 estradiol) and modified maturation medium (MM: CM with the addition of 100 μg mL-1 ascorbic acid and 5 μL mL-1 ITS). Oocytes were matured in GM for 12 h and then separated into 2 groups, CM (GM+CM) and MM (GM+MM) for another 12 h of maturation. Two extra groups of BCB- oocytes were directly cultured for 24 h in CM or MM media (BCB-/CM and BCB-/MM). Colored oocytes (BCB+) and a control group (oocytes not exposed to BCB) were matured for 24 h in CM. All groups were cultured at 38.5°C and 5% CO2 in humidified atmosphere. Fertilization took place in SOF medium supplemented with 10% of estrous sheep serum during 20 h with a sperm concentration of 1 × 106 spermatozoa/mL. Presumptive zygotes were cultured for 8 days in SOF with 10% FCS at 38.5°C, 5% CO2 and 5% O2. Results are shown in Table 1. The percentage of morula plus blastocyst obtained from BCB - oocytes was significantly increased in oocytes exposed to growth medium (containing ITS, ascorbic acid and low hormone concentrations; groups GM+CM and GM+MM) for the first 12 h. An increasing tendency has also been observed in blastocyst yield in these two groups. Regarding maturation rate, no differences were found in all groups (data not shown). In conclusion, as De Wu et al. (2006) showed in prepubertal gilts, we also achieved some improvements in embryo development of growing oocytes when the first 12 h of maturation took place in a growth medium. However, embryo developmental potential of BCB- oocytes is still lower compared with that of BCB+ oocytes. Table 1.Effect of GM on embryo development of BCB- oocytes Grant sponsor Spanish Ministry of Science and Innovation.Code: AGL2007-60227-CO2-01


2011 ◽  
Vol 23 (1) ◽  
pp. 173
Author(s):  
M. J. Sudano ◽  
D. M. Paschoal ◽  
T. S. Rascado ◽  
L. C. O. Magalhães ◽  
L. F. Crocomo ◽  
...  

Phenazine ethosulfate (PES) is a metabolic regulator that inhibits fatty acid synthesis and favours the pentose-phosphate pathway. Supplementation of fetal calf serum (FCS) during culture has been correlated with the reduction of quality of in vitro produced bovine embryos (IVPE). The aim of the present study was to evaluate embryo development and apoptosis in blastocysts after the supplementation of PES and FCS in culture medium of IVPE. Oocytes (N = 4320) were matured and fertilized in vitro (Day 0). The zygotes (Bos indicus) were cultured in SOFaa medium with 4 concentrations of FCS (0, 2.5, 5, and 10%) and with the use or not of 0.3 μM PES from Day 4 (after 96 h of embryo culture). Embryo development was evaluated after 7 days of culture. Apoptosis in blastocysts (N = 60–80) was accessed through TUNEL reaction. Embryos (Bos indicus) recovered from superstimulated cows were used as in vivo control (n = 15). Data were analysed by ANOVA followed by LSD using PROC GLIMMIX (SAS; SAS Institute Inc., Cary, NC, USA) means ± SEM. Increasing FCS concentration in the culture media did not change cleavage (86.7 ± 1.7, 82.3 ± 1.6, 86.3 ± 1.4, 87.0 ± 1.5, P > 0.05) and augmented blastocyst production (30.5 ± 2.5a, 41.8 ± 2.4b, 40.5 ± 2.6b, 47.2 ± 2.8b, P < 0.05), respectively, for 0, 2.5, 5, and 10%. Additionally, increasing FCS concentration increased apoptosis in blastocysts (13.8 ± 1.2b, 19.1 ± 1.8b, 20.7 ± 1.9bc, 28.4 ± 2.3c, P < 0.05, respectively, for 0, 2.5, 5, and 10%). The addition of PES from Day 4 in the culture medium did not affect (P > 0.05) cleavage (87.0 ± 1.3 and 84.4 ± 1.3), blastocyst production (42.0 ± 2.8 and 43.0 ± 2.0), and apoptosis in blastocysts (20.7 ± 2.0b and 18.9 ± 2.1b), respectively, for control and PES Day 4 groups. Independent of FCS withdrawal or PES addition to culture medium, the in vivo control group presented the lowest apoptosis rate (6.3 ± 1.1a). Therefore, increasing FCS concentration augmented embryo development and reduced blastocyst quality. However, the addition of 2.5% of FCS in the culture medium increased the embryo development without the reduction of blastocyst quality. Moreover, the PES supplementation from Day 4 did not affect embryo development and blastocyst quality. São Paulo Research Foundation – FAPESP.


Sign in / Sign up

Export Citation Format

Share Document