Influence of day-0 and day-7 superovulated cow serum during development of bovine oocytes in vitro

1994 ◽  
Vol 6 (2) ◽  
pp. 261 ◽  
Author(s):  
A Boediono ◽  
M Takagi ◽  
S Saha ◽  
T Suzuki

Oocytes were matured in medium supplemented with 5% serum collected from superovulated cows at oestrus (Day-0 SCS) or at the time of embryo collection (Day-7 SCS), or in medium supplemented with fetal calf serum (FCS). After insemination using frozen-thawed sperm, oocytes were cultured in vitro with medium supplemented with 5% Day-0 SCS or 5% Day-7 SCS or 5% FCS. The proportions of embryos that cleaved were not significantly different among treatments, whereas development of the embryo to a blastocyst was significantly higher in the presence of SCS than FCS. When the four possible combinations of Day-0 SCS and Day-7 SCS were used in the maturation and culture media, there were no differences among treatments, except that the cleavage rate was significantly higher (P < 0.05) with Day-0 SCS in the maturation medium and Day-7 SCS in the culture medium than with Day-7 SCS in the maturation medium and Day-0 SCS in the culture medium. The proportions of embryos that cleaved and developed to blastocysts were not related with the level of progesterone and luteinizing hormone in the serum added to the maturation and culture media. However, the use of serum with low concentrations of glucose, fatty acids and cholesterol in the maturation medium and the culture medium tended to be associated with a higher rate of cleavage and blastocyst development.

2014 ◽  
Vol 26 (1) ◽  
pp. 196
Author(s):  
K. R. L. Schwarz ◽  
R. C. Botigelli ◽  
F. C. Castro ◽  
M. R. Chiaratti ◽  
C. L. V. Leal

The sensitivity of IVP embryos to cryopreservation is often associated with lipid accumulation in the cytoplasm induced by the presence of fetal calf serum (FCS) during culture. Intracellular levels of cyclic (c)AMP and cGMP are involved in the regulation of lipolysis in adipocytes; high levels stimulate lipolysis whereas low levels lead to lipogenesis. Both nucleotides are present in bovine oocytes, together with the enzymes for their synthesis and degradation. The aim of this study was to analysis the effect of FCS on the cGMP pathway and the influence of cGMP on cytoplasmic lipids in bovine oocytes. In experiments 1 and 2, cumulus–oocyte complexes (COC) were cultured for 24 h in maturation medium with different proportions of FCS (2 and 10%) and a control group was matured with 0.4% BSA. After this period, transcripts for cGMP pathway were assessed by real-time PCR (GUCY1B3 and PDE5, cGMP synthesis and degradation enzymes, respectively; experiment 1) in oocytes and cumulus cells, and cGMP levels were measured in COC using commercial enzyme immunoassay kits (EIA; experiment 2). In experiments 3 and 4, COC were matured for 24 h with 0.4% BSA and different concentrations of the phosphodiesterase (PDE)5 inhibitor (0, 10–7, and 10–5 M sildenafil) to inhibit cGMP degradation and a control group was matured with 0.4% BSA. The nucleotide levels were measured in COC (experiment 3) and the oocytes were stained with Nile Red (1 μg mL–1) for evaluation of lipid content (experiment 4). Statistical analyses were performed by ANOVA followed by Tukey post hoc test using SAS software (SAS Institute Inc., Cary, NC, USA). Data for gene expression from 5 replicates and for cGMP measurements and lipid content from 3 replicates were log10-transformed into before analyses. The level of significance was 5%. The presence of FCS reduced GUCY1B3 expression in both cells and increased PDE5A in cumulus cells (P < 0.05). In experiment 2, the groups treated with 2 (0.64 fmol/COC) and 10% FCS (1.04 fmol/COC) showed decreased cGMP levels compared with control (9.46 fmol/COC; P < 0.05). In experiment 3, inhibition of PDE5A increased cGMP levels in the treated groups (36 and 56 fmol/COC for 10–7 and 10–5 M sildenafil, respectively) compared with control (9.5 fmol/COC; P < 0.05). Therefore, sildenafil showed inverse effects compared with FCS (experiment 2). In experiment 4, oocytes treated with 10–7 and 10–5 M sildenafil showed a reduced lipid content compared with controls (11.6 ± 9.4 v. 13.9 μm2 fluorescence intensity, respectively; P < 0.05). The results suggest that FCS in maturation medium affects the cGMP pathway, interfering with the transcription of genes that control its levels, which in turn results in nucleotide reduction. Inhibition of PDE5 increases cGMP levels and reduces the lipid content of oocytes, indicating that changes in this pathway caused by FCS may affect lipid metabolism of oocytes. More studies are underway to better understand this mechanism. The authors acknowledge FAPESP 2012/00170-0 for financial support.


2011 ◽  
Vol 23 (1) ◽  
pp. 191 ◽  
Author(s):  
J. Angulo ◽  
G. T. Gentry ◽  
R. A. Godke ◽  
K. R. Bondioli

It has been reported that the addition of serum to embryo culture media alters gene expression and triggers the development of large offspring syndrome. The objectives of this study were to determine gene expression levels in embryos cultured in the absence or presence of 5% calf serum and in vivo-derived (IVD) embryos and to determine the effects of serum on the length of elongated embryos. Abattoir-derived oocytes were obtained from a commercial provider and fertilized at 24 h of maturation with semen from a bull previously used for IVF. At 18 h post-insemination (hpi), embryos were denuded and groups of 15 presumptive zygotes were cultured in 30-μL drops of modified SOF medium with amino acids and 6 mg mL–1 of BSA (mSOFaa). At 72 hpi, cleavage rate was assessed and embryos were randomly allocated into 2 treatments: mSOFaa without and with 5% calf serum. Embryos were then cultured to 168 hpi and blastocyst rates were assessed and recorded. Blastocysts (n = 5 to 10) from each treatment were transferred into synchronized recipients, and Day 14 embryos were recovered 7 days post-transfer. Embryos were photographed, measured, and immediately stored at –80°C in a minimal volume of PBS + 0.1% polyvinyl alcohol. Messenger RNA was isolated using a Dynabeads mRNA Direct Kit™ (Invitrogen, Carlsbad, CA), and reverse transcription was performed using an iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., CA). Quantitative PCR was performed to determine the transcript abundance for COX6A, IFNT1a, PLAC8, IGF2R, and GAPDH for each sample. The GAPDH was used as a reference gene, and gene expression was calculated as a ratio of expression levels between each gene of interest and GAPDH. Expression levels for each gene were determined from standard curves generated by serial dilutions of PCR amplicons starting with 0.4 pg/reaction. Blastocyst development rates were higher in embryos cultured with serum compared with the nonserum treatment (14.9 and 7.4% respectively; chi-square, P < 0.001). Lengths of elongated embryos from the serum (3395.3 ± 414.7 μm) and nonserum (2784 ± 741.8 μm) culture treatments differed from the IVD (6297.7 ± 677.2 μm) treatment (mean ± SE; ANOVA, P < 0.0052). There were no differences in the mean expression levels for COX6A, IFNT1a, PLAC8, and IGF2R across treatment groups, but in the serum treatment, 3 out 11 overexpressed IFNT1a, 4 out of 11 overexpressed IGF2R, and 2 out of 11 overexpressed PLAC8, defined as being 2 standard deviations above the mean of the IVD treatment for each respective gene. In the in vitro-produced nonserum and IVD treatments, overexpression by this definition was not observed. Although mean expression levels were not affected by culture with serum under these conditions, very high expression of IFNT1a, IGF2R, and PLAC8 was observed in some embryos cultured with serum, but not in embryos cultured without serum or IVD embryos.


2021 ◽  
Author(s):  
Seyede Sogand Sajadi ◽  
Ali Haniloo ◽  
Samad Nadri ◽  
Negin Torabi

Abstract Echinococcus granulosus-developed metacestodes in the cultured medium are used for the assessment of its susceptibility to different compounds; however, this procedure is time-consuming and risky. In the present study, aspirated protoscoleces from the infected sheep were used to evaluate the effects of glucose, as an energy source, as well as ascorbic acid, as an antioxidant vitamin, on larval development. Protoscoleces were maintained in RPMI1640 culture media containing 10% fetal calf serum, as well as different concentrations of glucose (6 and 8 mg/ml) and ascorbic acid (25, 50, and 100 µg/ml). A culture medium containing 4 mg/ml of glucose was served as the control. Larger cysts were achieved in a shorter time from the medium enriched with 6 mg/ml of glucose (740 ± 20 µm) compared to the control group (420 ± 40 µm). However, in the groups treated with ascorbic acid, the number of cysts was higher in 100 µg/ml (32.5 ± 0.7) compared to the control group (12.5 ± 0.7). Additionally, the mature cysts were achieved on the 7th day of cultivation with 100 µg/ml of ascorbic acid compared to 18 days in the control group.


Zygote ◽  
2012 ◽  
Vol 22 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Xian-rong Xiong ◽  
Li-jun Wang ◽  
Yong-sheng Wang ◽  
Song Hua ◽  
Xiang-dong Zi ◽  
...  

SummaryThe preference of fertilized (IVF) and somatic cell nuclear transfer (SCNT) presumptive zygotes for different media when cultured in vitro to the blastocyst stage was evaluated in this study. The experiment comprised two zygote production methods (IVF and SCNT) × two culture media (mSOF and G1.5/G2.5) factorial design in which culture droplets that contained approximate 30 presumptive zygotes formed the experimental plots for the assessment of cleavage and blastocyst development. There were 15 to 20 replicates (culture droplets) per treatment combination. Sub-samples 30 to 41 of the blastocysts produced were assessed for cell number and cell apoptosis. A further 10 blastocysts per treatment combination were used for quantitative real-time polymerase chain reaction (RT-PCR) to evaluate the relative abundance of Hsp70 and Bax mRNA. Presumptive zygotes produced by IVF were developmentally more competent than SCNT zygotes in terms of cleavage rate (66.9 vs. 57.0%; P < 0.05) and blastocyst development rates (blastocysts of presumptive zygotes 29.7 vs. 24.8%; blastocysts of cleaved zygotes 44.4 vs. 36.6%; P < 0.05). Over both zygote production systems, however, the results were similar whether culture was in mSOF or in G1.5/G2.5 media for cleavage rate (63.2 vs. 62.4%; P > 0.05) and blastocyst development rate (blastocysts of presumptive zygotes 26.4 vs. 25.7%; P > 0.05; blastocysts of cleaved zygotes 41.8 vs. 41.2%; P > 0.05). There was, however, a significant interaction between the method of zygote production and culture medium for the apoptotic index of blastocysts. The interaction was such that IVF-produced zygotes cultured in mSOF had a lower apoptotic index compared with those cultured in G1.5/G2.5 (4.7 ± 1.2% vs. 9.8 ± 0.9%; P < 0.05) whereas SCNT zygotes had a higher apoptotic index when cultured in mSOF compared with those cultured in G1.5/G2.5 (11.9 ± 1.5% vs. 4.5 ± 1.2%; P < 0.05). Moreover, RT-PCR analysis showed that embryos from IVF-produced zygotes cultured in mSOF had a lower expression level of stress-related and apoptosis genes (Hsp70 and Bax) than those cells cultured in G1.5/G2.5 medium, while SCNT-derived embryos cultured in mSOF had a higher expression level of these genes than those embryos cultured in G1.5/G2.5 medium. The results of this study show that bovine IVF- and SCNT-produced presumptive zygotes have different nutrient requirements for in vitro culture to the blastocyst stage of development. IVF-derived zygotes have a preference for mSOF as the culture medium whereas the G1.5/G2.5 medium is more suitable for the culture of bovine SCNT-derived zygotes.


1994 ◽  
Vol 41 (5) ◽  
pp. 1091-1098 ◽  
Author(s):  
J.M. Lim ◽  
O. Okitsu ◽  
K. Okuda ◽  
K. Niwa

1996 ◽  
Vol 8 (8) ◽  
pp. 1153 ◽  
Author(s):  
N Yamauchi ◽  
H Sasada ◽  
S Sugawara ◽  
T Nagai

The effects of culture media used and culture period for in vitro maturation of porcine oocytes on their subsequent response to chemical and electrical activation, were investigated. Activated oocytes were identified by the presence of a pronucleus(ei) or cleavage. Porcine oocytes were cultured for 24, 30, 36, 42 and 48 h in TCM199 with Earle's salts (199) supplemented with 10% fetal calf serum (199-FCS) before electrical stimulation. Although few oocytes were activated after 24 h and 30 h of culture (5.4% and 6.1% respectively), the percentage of activated oocytes increased significantly to 93.2% after 42 h in culture (P < 0.05); however, when the culture period was extended to 48 h, there was a significant decrease to 56.7% (P < 0.05). Oocytes were also cultured in four types of media: (1) 199-FCS; (2) 199 supplemented with 5 mg mL-1 bovine serum albumin (199-BSA); (3) Kreb's-Ringer bicarbonate solution supplemented with 10% FCS (KRB-FCS); and (4) KRB supplemented with BSA (KRB-BSA). After 42 h of culture in each medium, the oocytes were electrically activated. Although rates of maturation of oocytes cultured in the four media were similar (74.0-80.8%), all oocytes except those cultured in 199-FCS failed to be activated. In addition, oocytes were cultured for 36, 42 and 48 h in 199-FCS and then stimulated by treatment with ethanol. Significantly fewer oocytes were activated in the chemically-treated group than in the electrically-treated group. These results indicate that culture conditions used for the culture of porcine oocytes in vitro are important with respect to their subsequent response to artificial activation.


2014 ◽  
Vol 26 (1) ◽  
pp. 154 ◽  
Author(s):  
D. Moreno ◽  
A. Neira ◽  
L. Dubreil ◽  
L. Liegeois ◽  
S. Destrumelle ◽  
...  

In the majority of media for embryo culture, 2 of typical components used are FCS or BSA; however, the presence of FCS in the culture medium has been shown to have a negative effect on embryo quality and the use of animal-derived proteins in culture media increases the risks of disease transmission through in vitro embryo production. The aim of this study was to develop an in vitro embryo culture medium free from FCS and BSA, but with the addition of various growth factors and cytokines (GF-CYK: IGF-I, IGF-II, bFGF, LIF, GM-CSF) 50 ng mL–1 and (TGF-β1) 100 ng mL–1 supplemented with hyaluronan (HA) and recombinant albumin (RA). Bovine oocytes (n = 1043, 6 replicates) from abattoir ovaries were matured in TCM-199 medium with 60 μg mL–1 penicillin, 60 μg mL–1 streptomycin, and 10 ng mL–1 EGF for 24 h at 39°C and 5% CO2 in humidified air. Afterward, the oocytes were fertilized in IVF-TALP medium with 6 mg mL–1 fatty acid-free BSA and 1.7 IU mL–1 heparin for 18 h under the same conditions. After fertilization, presumptive zygotes were divided into two groups and cultured in 30 μL droplets of SOF supplemented with (1) 0.4% BSA + 5 μg mL–1 insulin, 5 μg mL–1 transferrin, and 5 ng mL–1 selenium (ITS) as a control; or (2) GF-CYK + 0.5 mg mL–1 HA + 0.15% RA (M1). Droplets were preserved under mineral oil in a humidified atmosphere of 5% CO2, 5% O2, and 90% N2 at 39°C. Blastocyst development and blastocyst diameter was observed at 7 and 8 days post-fertilization (dpf). Developmental and diameter data were analysed using the Wilcoxon test by using R software. The blastocyst rates were not significantly different between the control and M1 medium: at 7 dpf (22.9% ± 4.8 and 30.2% ± 3.0), and at 8 dpf (29.6% ± 5.1 and 37.4% ± 2.0 respectively; P > 0.05). The blastocyst diameter obtained with the M1 medium was significantly greater (P < 0.05) than that of the control at 7 dpf (173.3 μm ± 4.9 and 157.2 μm ± 4.1, respectively); however, no significant differences were observed at 8 dpf (190.3 μm ± 5.2 and 179.7 μm ± 5.3, respectively). In conclusion, the FCS- and BSA-free medium with GF-CYK, HA, and RA (M1) showed a comparable development rate to the control medium at 7 and 8 dpf. These growth factors and cytokines in association with hyaluronan and recombinant albumin have a synergistic action by promoting an increase in the blastocyst diameter at 7 dpf. This is fully synthetic method of embryo culture; it presents a valuable tool to reduce the risks of disease transmission via embryo transfer.


2010 ◽  
Vol 22 (1) ◽  
pp. 231
Author(s):  
J. Block ◽  
L. Bonilla ◽  
P. J. Hansen

The objective of the present study was to determine whether culture of bovine embryos in a proprietary serum-free culture medium, Block-Bonilla-Hansen-7 (BBH-7), could improve development to the blastocyst stage and enhance survival following vitrification. For Exp. 1, embryos were produced in vitro and cultured in BBH-7 or modified synthetic oviductal fluid (mSOF; as in zygote 10:341 except with 10 μL mL-1 of nonessential amino acids, 20 μL mL-1 of essential amino acids, and 1 mg mL-1 of polyvinyl alcohol instead of albumin) in 5% (v/v) oxygen. Grade 1 expanded blastocysts were harvested at Day 7 post-insemination and vitrified using the open-pulled straw method (Vagta et al. 1998 Mol. Reprod. Dev. 51, 53-58). Vitrified embryos were thawed and cultured in vitro in either mSOF or BBH-7 supplemented with 10% fetal bovine serum and 50 μM dithiolthreitol. Re-expansion and hatching rates were recorded at 24, 48, and 72 h post-thaw. There was no effect of culture medium on cleavage rate. The proportion of oocytes that developed to the blastocyst and advanced blastocyst stages (expanded, hatching, and hatched) at Day 7 was higher (P < 0.001) for embryos cultured in BBH-7 than for embryos cultured in mSOF (41.9 ± 2.0 v. 14.7 ± 2.0% and 31.1 ± 1.3 v. 6.4 ± 1.3%, respectively). There was no effect of culture medium on re-expansion rates at 24, 48, and 72 h post-thaw or on hatching rates at 48 or 72 h. However, the proportion of embryos that were hatching or had hatched by 24 h post-thaw was higher (P < 0.001) for BBH-7 than for mSOF (59.0 ± 0.5 v. 26.7 ± 0.5%). For Exp. 2, late lactation and/or repeat breeder, lactating Holstein cows were synchronized for timed embryo transfer using the OvSynch-56 protocol. Embryos were produced in vitro and cultured in BBH-7 in 5% (v/v) oxygen. Vitrified embryos were produced as for Exp. 1. Fresh embryos were grade 1 expanded blastocysts harvested at Day 7 after insemination. A single embryo was transferred at Day 7 after putative ovulation to all cows with a corpus luteum confirmed by ultrasonography. Pregnancy was diagnosed at Day 28-30 of gestation by ultrasonography. There was no difference in the proportion of recipients that became pregnant after receiving either a fresh (7/18 = 39%) or vitrified (10/27 = 37%) embryo cultured in BBH-7. The results of the present study indicate that BBH-7 can be used to increase the proportion of oocytes that develop to the blastocyst stage. Moreover, the results demonstrate that vitrified embryos produced after culture in BBH-7 can achieve pregnancy rates similar to those obtained using fresh embryos. Support: USDA 2006-55203-17390 and Southeast Milk Checkoff Program.


2015 ◽  
Vol 27 (1) ◽  
pp. 205 ◽  
Author(s):  
E. Mullaart ◽  
F. Dotinga ◽  
C. Ponsart ◽  
H. Knijn ◽  
J. Schouten

Improving the efficiency of the in vitro production (IVP) process is very important because it results in more embryos to be used in breeding programs or as commercial service. At CRV, a culture medium consisting of SOF with amino acids and BSA is used. In the past, richer culture media were used with 10% fetal calf serum combined with BRL cell co-culture. Although the efficiency of the IVP process of these media was good, these rather high serum concentrations were quite often related to large offspring syndrome (LOS). The switch to a culture system without serum resulted in a significant reduction in LOS but also in a reduction of embryo yield. The aim of the present study was to investigate the effect of adding low amounts of serum to the culture medium on efficiency of embryo production. Immature cumulus-oocyte complexes (COC) were recovered from ovaries 6 to 8 h upon slaughter. The COC were matured in vitro in TCM199/FCS/LH/FSH supplemented with cysteamine (0.1 mM). Subsequently, matured oocytes were fertilised with frozen-thawed gradient-separated semen and further cultured for 7 days in SOFaaBSA. The SOF medium contained either 0 (control), 0.1, 0.5, or 1.0% oestrus cow serum (ECS). Embryos development was scored at Day 7. Three replicates were performed and results were analysed by chi-square analyses. The results clearly show that adding ECS significantly improved embryo production (Table 1). Interestingly, already very low amounts (0.1%) of serum gave a significant increase in embryo percentage. In conclusion, addition of very low amounts of ECS (0.1%) is beneficial for embryo production, resulting in significantly higher embryo production (from 19 to 27%). In a subsequent field trial with OPU-derived embryos, the effect of addition of 0.1% ECS on birth weight (LOS) of the calves has to be investigated. Table 1.Percentage of blastocysts at Day 7 after culture in SOF medium with different amounts of serum


Sign in / Sign up

Export Citation Format

Share Document